Следуя примеру Дойча, я обратился к изучению некоторых взаимосвязей, которые можно считать своего рода законами человеческой активности. Однако мой подход, который я принес с собой из физики, не был подхвачен коллегами, а скорее вызвал сопротивление. Вот почему премия Карла Дойча – приятный сюрприз для меня. Она означает, что я могу еще активнее заняться реализацией своей второй мечты – превращением социальных исследований в настоящую науку. Не внедрять математический аппарат, как порой превратно полагают, а продвигать логические модели. Но сначала немного слов о том, как я обратился к социальным исследованиям.
Однажды, когда мне было одиннадцать лет и я пас коров во время Второй мировой войны, мне подумалось вот что. Представьте, что сто солдат противостоят пятидесяти солдатам в открытом поле. Кто угодно может застрелить кого угодно из противоположного лагеря. Предположим, что их орудия и навыки равны. Сколько из 100 останется в живых, после того как 50 других будут уничтожены? Я подозревал, что потери превосходящей силы будут довольно малы. Я проделал некоторые расчеты в уме, но они оказались слишком сложными, а у меня с собой не было бумаги. Поэтому мне пришлось сдаться. Однако это означало, что в глубине души у меня созрело стремление использовать количественные логические модели для анализа социальных проблем.
Много позже я вспомнил эту задачу. Я быстро составил систему двух дифференциальных уравнений и решил их. Результат – целых 87 из 100 выживут. И что же, опубликовал ли я этот результат? Нет, не тут‐то было. Некий Ланчестер уже разработал эти уравнения в 1916 г., т.е. задолго до моего рождения [Lanchester, 1956].
Подобно Карлу Дойчу, мы с семьей бежали от тоталитарного режима в Восточной Европе. В конце концов я оказался в Северной Америке. По дороге я окончил среднюю школу в городе Марракеше (Марокко). Степень бакалавра ядерной физики я получил в Университете Торонто, а степень доктора физических наук – в Университете Делавера. Я публиковался в области ядерной физики и физики твердых тел [Taagepera, Nurmia, 1961; Taagepera, Storey, McNeill, 1961; Taagepera, Williams, 1966], но больше работал с текстильными волокнами в промышленной лаборатории (Pioneering Laboratory, DuPont de Nemours Experimental Station). Однако меня по-прежнему волновало то, что случилось с моей семьей и моей страной в ходе коллизий мировой политики. Поэтому я стал посещать вечерние курсы по политологии и в конце концов получил степень магистра международных отношений.
Во время обучения я обратил внимание на так называемый кубический закон выборов в англосаксонских странах. Это отношение применимо к двум основным партиям в выборах по мажоритарной системе относительного большинства с одномандатными округами. Оно отражает тот факт, что большая партия имеет изрядный бонус – ее доля мест больше, чем доля голосов. Но насколько больше? Просто сказать «больше голосов, больше мест» – это примитивная наука. Направления изменения недостаточно. Чтобы считаться наукой, мы должны делать взаимосвязи количественными. Это означает, что мы должны задаться вопросом о том, насколько большую долю мест получит партия с заданной долей голосов.
Кубический закон выборов это и делает. Он соединяет отношение мест двух партий, А и В, и отношение их голосов. Отношение мест примерно равно кубу отношения голосов S>A/S>B=(V>A/V>B)>3. Например, если проценты голосов близки к 60:40, то так называемый кубический закон говорит, что проценты мест будут различаться как 77:23.