Физики исследуют энергию электромагнитных колебаний, измеряют длину цветовой волны, проводят анализ спектра.

Химики работают с красителями, изучают их молекулярное строение, создают новые пигменты, растворители, технологию нанесения на различные поверхности.

Специалисты компьютерной графики создают различные цветовые модели, позволяющие наиболее точно воспроизвести цвет на экране монитора или при выводе на печать.

Физиологи анализируют строение глаза и выявляют особенности передачи зрительной информации в мозг, определяют закономерности восприятия цвета.

Психологи занимаются проблемами влияния цвета на сознание, восприятия цвета, ищут взаимосвязь между душевным состоянием человека и воздействием цвета.

Художники должны разбираться во всех аспектах теории цвета, хотя они часто интуитивно решают психологические вопросы, находят новые приемы эстетического воздействия, используют символическое звучание цвета, создают неожиданные композиционные решения.

2.2.1. Почему мы видим цвет

Цвет – результат взаимодействия трех составляющих: светового потока, наблюдаемого объекта и зрителя. Воспринимаемый наблюдателем цвет объекта зависит от освещения и свойств поверхности, а кроме того, и от самого наблюдателя.

Светом мы называем электромагнитное излучение, длина волны (А.) которого лежит в пределах видимого диапазона. Под видимым диапазоном в технике условно понимается диапазон X = 400–700 нм, хотя на самом деле человек способен видеть в более широком диапазоне (например, X = 380–770 нм). При этом, ощущение цвета связано с выраженной неравномерностью спектра светового потока. Раздражение сетчатки глаза световым потоком, имеющим равномерный спектр в видимом диапазоне, вызывает ощущение белого {ахроматического) цвета.

Важно понимать, что не существует «черного цвета» или «серого цвета». Один и тот же по абсолютной яркости (мощности) световой поток, излучаемый поверхностью, в зависимости от яркости фонового освещения и ряда других обстоятельств, мы можем воспринять и как «черный» (то есть, вовсе не увидеть, поскольку световой поток по яркости ниже текущего порога чувствительности глаза), как некий «темно-серый» или «светло-серый», или даже как ослепительно, болезненно белый. (В данном случае «ослепительность» и «болезненность» следует понимать буквально: наблюдатель испытает болезненные ощущения и будет на короткое время ослеплен.)

В реальной жизни мы рассматриваем объекты и их изображения не в «абсолютно черной комнате», а в условиях фонового освещения, которое может варьироваться от света звезд (ясная безлунная ночь) до яркого солнечного света. Органы чувств человека представляют собой измерительные приборы, но очень своеобразные: они измеряют относительные приращения величин, почти не интересуясь их абсолютными значениями. Например, рука отчетливо ощущает вес отдельно взятой стограммовой гирьки, но мало кто способен распознать эту же гирьку, подброшенную в тяжелый чемодан. Способность человека различать неодинаковую яркость отдельных участков на светлом фоне {пороговый контраст) зависит от яркости самого фона. Так, если мы в темной комнате направим на какой-либо участок стены луч фонарика, этот участок покажется нам существенно светлее окружающих. Однако, если та же стена освещена ярким светом Солнца, никакого приращения освещенности мы не заметим, хотя собственная мощность фонарика, естественно, не изменилась.

Экспериментами установлено, что зависимость порогового контраста от фоновой величины носит логарифмический характер (закон Вебера-Фехнера). Этот закон действителен для всех органов чувств (кстати, впервые он был открыт для ощущения веса). Из него вытекает, в частности, такое важное следствие: гипотетические поверхности, отражающие 100 %, 10 %, 1 % и 0,1 % падающего света, покажутся нам равноотстоящими друг от друга по светлоте (десятичные логарифмы 0, –