Если, например, даны равные линии AB и CD:

A_____B

C_____D

E__G__F

то существующее между ними отношение равенства непосредственно доступно созерцанию. Если же линии EF и EG неравны, то этим дано как отношение EF к EG, так и отношение EG к EF, так как разница обеих изображенных линиями величин выражена линией GF. Отношение неравных величин есть количество, так как оно выражается разницей GF, которая есть количество. Отношение же равенства не есть количество, так как между величинами нет разницы, а из равенств одно не может быть больше другого (что бывает при неравенствах).

9. Отношение двух промежутков времени или скоростей двух равномерных движений обозначают двумя линиями, вдоль которых, как мы себе представляем, равномерно движутся два тела. В зависимости от того, принимаем ли мы обе эти линии за изображения величин, времен или скоростей, они будут представлять или отношение друг к другу, или отношение времен, или отношение скоростей. Так, пусть линии А и В:

____A____ ____B____

прежде всего наглядно представляют отношение друг к другу. Если же затем мы представим себе, что вдоль этих линий равномерно с равной скоростью движутся тела, и если связанные с движением этих тел промежутки времени будут относиться друг к другу как большие, меньшие или равные в соответствии с пройденным в это большее, меньшее или равное время путем, то линии А и В будут представлять равенство или неравенство, т. е. отношение этих промежутков времени. Если, наконец, мы предположим, что линии А и В пройдены в один и тот же промежуток времени, то они будут представлять равенство или неравенство, т. е. отношение, скоростей, ибо скорости бывают большими, меньшими или равными в зависимости от того, проходят ли движущиеся тела в одинаковое время большие, меньшие или равные отрезки пространства.

Глава XIII

Об аналогиях, или О тождестве отношении

1, 2, 3, 4. Сущность и определение арифметических и геометрических отношений. 5. Определение и некоторые свойства равных арифметических отношений. 6, 7. Определение и преобразование равных геометрических отношений. 8, 9. Определение и преобразование неравных отношений. 10, 11, 12. Сравнение аналогичных количеств в отношении их величин. 13, 14, 15. Соединение отношений 16, 17,18, 19, 20, 21, 22, 23, 24, 25. Определение и свойства непрерывных отношений. 26, 27, 28, 29. Сравнение арифметических и геометрических отношений.

Глава XIV

О прямых и кривых линиях. Угол и фигура

1. Определение и свойства прямой линии.

[…] Кратчайшая линия между двумя данными точками есть та, конечные точки которой не могут быть удалены друг от друга без того, чтобы она не претерпела количественных изменений, т. е. чтобы не изменилось отношение этой линии к другой линии […] Кривой называется такая линия, конечные пункты которой могут быть еще больше удалены друг от друга, прямой – такая, чьи конечные пункты не могут быть больше удалены друг от друга […] III. Между двумя данными точками может быть проведена только одна прямая линия, ибо между ними может быть только одно кратчайшее расстояние, или одна наименьшая длина. Чтобы доказать это, предположим обратное, т. е. что между двумя данными точками могут быть две прямые линии. В таком случае они или совпадают и, следовательно, обе представляют собой только одну прямую линию, или не совпадают, и тогда, если мы посредством растягивания наложим одну из них на другую, конечные пункты одной линии окажутся более удаленными друг от друга, чем конечные пункты другой. Первая линия поэтому с самого начала была кривой […]