Боюсь, она не поступила (но не из-за этого). Не поступил и юноша из общественной школы[5], который откинулся на стуле (моя память рисует, как он положил ноги на стол – но это, видимо, все-таки ложное воспоминание, вызванное общим впечатлением от него) и протянул в ответ на одно из моих лучших заданий с подвохом: “Вопрос чертовски дурацкий, вы не находите?” Надо сказать, по его поводу я пребывал в нерешительности, но конкуренция была слишком высока, так что я рекомендовал его одному задиристому коллеге из другого колледжа, и тот его принял. Юноша позже отправился проводить полевые исследования в Африке и, рассказывают, одним взглядом угомонил разъяренного слона.

Также мне нравится вопрос, который любил задавать на собеседованиях коллега с философского факультета: “Откуда вы знаете, что это все происходит наяву?” У другого коллеги был такой:

Один монах [не знаю, почему именно монах – наверное, для экзотики] на рассвете отправился по длинной извилистой дороге от подножия горы к вершине. Он поднимался весь день. Добравшись до пика, он переночевал в горной хижине. Наутро, в то же самое время, он отправился вниз по той же тропинке. Можно ли с уверенностью утверждать, что на тропинке есть точка, которую монах прошел в оба дня точно в одно и то же время?

Ответ – да, но не все способны понять или объяснить почему. Помогает, опять же, посмотреть на задачу под другим углом. Представьте, что в момент, когда монах отправляется наверх, другой монах одновременно отправляется в обратный путь по той же тропе, с вершины вниз. Очевидно, что в какой-то точке тропы два монаха встретятся. Эта загадка позабавила меня, но не думаю, что я задавал ее на собеседованиях, потому что, как только вы понимаете в чем дело, она, в отличие от вопроса про Эль Греко (или про зеркала, или про перевернутое изображение на сетчатке, или тем более про явь и сон), не ведет никуда дальше. Но, опять же, она показывает силу взгляда под другим углом. Пожалуй, это черта “нестандартного мышления”.

А вот вопрос, который я ни разу не задавал, но он может подойти для проверки математической интуиции того рода, что требуется биологам (интуиции – в противоположность математическим навыкам вроде алгебраических манипуляций или арифметических вычислений; но последние тоже не повредят). Почему такое множество воздействий – гравитация, свет, радиоволны, звук – подчиняется закону обратных квадратов? По мере удаления от источника сила воздействия резко снижается пропорционально квадрату расстояния, но почему? Можно сформулировать интуитивное объяснение: воздействие распространяется вовне во всех направлениях, распластываясь по внутренней поверхности расширяющейся сферы. Чем больше площадь расширяющейся поверхности, тем более “тонко размазано” воздействие. Площадь поверхности (как мы помним из евклидовой геометрии и могли бы доказать, если бы поставили такую цель, – но на собеседовании не будем утруждаться) пропорциональна квадрату радиуса. Отсюда закон обратных квадратов. Вот вам математическая интуиция, которую не обязательно сопровождать математическими манипуляциями: важное качество для студентов-биологов.

Далее на собеседовании может разгореться менее математическое, но не менее любопытное обсуждение возможных биологических применений закона, что поможет оценить обучаемость студента. Самка бабочки тутового шелкопряда привлекает самца, испуская химическое вещество – так называемый феромон. Самцы улавливают его на поразительно больших расстояниях. Следует ли ожидать здесь проявления закона обратных квадратов? На первый взгляд, возможно, да, но студент может отметить, что феромон будет сдувать ветром в определенном направлении. Как это скажется? Студент также может указать, что даже в безветренную погоду феромон не будет распространяться вовне по расширяющейся сфере, хотя бы потому, что половину сферы остановит земля, а большая часть другой половины будет слишком высоко. Здесь преподаватель, возможно, захочет раскрыть следующий занимательный факт, которого студент, скорее всего, не знает.