– Функция ReLU (Rectified Linear Unit):

Функция ReLU (Rectified Linear Unit) – это одна из наиболее популярных функций активации в глубоком обучении. Она возвращает 0 для всех отрицательных значений входа и само значение для всех положительных значений. Математически функция ReLU определяется следующим образом:

ReLU(x) = max(0, x)

где x – входное значение нейрона.

Одно из главных преимуществ функции ReLU заключается в ее простоте и эффективности. Функция ReLU позволяет нейронной сети просто отбрасывать отрицательные значения, не изменяя положительные значения. Это делает функцию ReLU вычислительно эффективной и ускоряет процесс обучения.

Функция ReLU также эффективно решает проблему затухающего градиента, которая может возникать при обучении глубоких нейронных сетей. При использовании функции ReLU, градиенты остаются неизменными для положительных значений, что позволяет эффективно передавать градиенты обратно через сеть и избежать затухания градиента.

Благодаря своей простоте и эффективности, функция ReLU является предпочтительным выбором во многих архитектурах нейронных сетей, особенно в глубоком обучении. Она широко применяется в различных типах сетей, включая сверточные нейронные сети (Convolutional Neural Networks) для компьютерного зрения, рекуррентные нейронные сети (Recurrent Neural Networks) для обработки последовательностей и полносвязные нейронные сети (Fully Connected Neural Networks) для общих задач машинного обучения.

Вместе с основной версией ReLU, существуют также вариации этой функции, такие как Leaky ReLU, Parametric ReLU и Exponential ReLU. Они вносят небольшие изменения в оригинальную функцию ReLU для решения некоторых ее ограничений и проблем, таких как "мертвые" нейроны (dead neurons) или неположительные значения. – Линейная функция (Linear):

Просто передает значение без применения нелинейности. Используется в некоторых случаях, например, в регрессионных задачах.

Оптимизация:

Оптимизация является важной составляющей процесса обучения нейронных сетей. Она заключается в настройке параметров сети, таких как веса и смещения, для достижения наилучшей производительности и минимизации ошибки или функции потерь.

В процессе обучения нейронной сети, целью является минимизация функции потерь, которая измеряет расхождение между предсказанными значениями сети и фактическими значениями. Чтобы достичь этой минимизации, используются различные алгоритмы оптимизации, которые обновляют веса и смещения сети в соответствии с градиентом функции потерь.

Один из наиболее распространенных алгоритмов оптимизации называется стохастическим градиентным спуском (Stochastic Gradient Descent, SGD). Он основывается на итеративном обновлении параметров сети в направлении, противоположном градиенту функции потерь. В каждой итерации SGD случайным образом выбирает небольшую подвыборку данных (так называемый мини-батч) и вычисляет градиент функции потерь относительно параметров сети. Затем происходит обновление параметров в направлении, обратном градиенту, с определенным шагом, называемым скоростью обучения (learning rate).

Другие популярные алгоритмы оптимизации включают Adam (Adaptive Moment Estimation) и RMSprop (Root Mean Square Propagation). Adam комбинирует идеи из разных алгоритмов оптимизации, включая SGD с импульсом и адаптивную скорость обучения. Он адаптивно регулирует скорость обучения для каждого параметра сети, учитывая предыдущие градиенты и их моменты. RMSprop также адаптивно настраивает скорость обучения, но использует скользящее среднее квадратов градиентов для нормализации шага обновления.