История показала, что Демокрит был прав. Учение об атомах стало основой современного научного мировоззрения. По лестнице размеров астрономы идут вверх, в макромир, а физики и химики – вниз, в микромир, но куда бы мы не пришли, мы имеем дело с атомами. Но являются ли атомы простейшими и неделимыми элементами мира? Нет, атомы оказались далеко не такими круглыми и гладкими, как думал Демокрит. Учёные выяснили, что атомы сами состоят из более простых частиц, которые стали называть элементарными. Первой элементарной частицей стал отрицательно заряженный электрон, открытый Дж. Томсоном в 1897 году. Через двадцать с лишним лет Резерфорд и другие физики доказали существование ещё одной элементарной частицы – положительно заряженного массивного протона.

В начале XX века был период, когда, как казалось физикам, мечта человека о познании мельчайших неделимых частиц мира осуществилась. Трёх сортов стабильных частиц – электронов, протонов и фотонов – хватало для объяснения светового электромагнитного излучения от атомов и для построения самих атомов, положительно заряженные ядра которых состояли, по тогдашним воззрениям, из неравной смеси протонов и электронов, а оболочки – из отрицательно заряженных электронов. Значит, именно эти три частицы являются теми простейшими кирпичиками, из которых построен наш мир? Но модель атомного ядра, состоящего из протонов и электронов, вызывала сомнения. Резерфорд и другие физики подозревали, что в ядре существует нейтрон – нейтральная частица, которая прибавляет ядру массу, не добавляя заряд. Именно количеством нейтронов в ядре и отличаются друг от друга изотопы одного и того же химического элемента. В 1932 году нейтрон был открыт Чедвиком. Казалось, что можно вздохнуть с облегчением: мир атомов прекрасно строился из протонов, нейтронов и электронов. Добавить сюда фотоны – и получится, что для построения Вселенной достаточно всего четырёх сортов частиц, из которых только нейтрон был нестабильным и имел время жизни на свободе около четырнадцати минут, хотя внутри ядра он сохранял устойчивость и жил неограниченно долго.

Но была одна проблема: при бета-распаде нестабильных ядер оттуда вылетали электроны. Когда учёные подсчитали энергетический баланс этой реакции, то обнаружили, что энергия системы до распада и после различается, словно закон сохранения энергии не выполняется. Вольфганг Паули в 1930 году выдвинул идею нейтрино – лёгкой нейтральной частицы, которая уносит часть энергии бета-распада. С учётом нейтрино, которое было очень трудно обнаружить, закон сохранения удавалось спасти.

– Значит, для построения мира нужно было пять частиц? – уточнила Галатея.

– Для ядерных сил, скрепляющих атомное ядро, японец Юкава в 1934 году предложил модель, в основе которой лежит новая и нестабильная элементарная частица пимезон.

– Шесть частиц? – Галатея стала загибать пальцы на второй руке.

– В 1936 году нашли частицу, которую приняли за мезон Юкавы. Но это оказался мюон, совсем не та частица, которая ожидалась. Как сказал профессор Исидор Раби, когда был открыт мюон: «Кто заказал это?» Пимезон Юкавы был открыт в 1947 году.

– Уже семь частиц! – продолжила счёт девочка.

– Модель элементарных частиц затрещала по швам. В том же году были открыты две новые элементарные частицы – К-мезон и лямбда-гиперон. В 1955 году был открыт антипротон, в 1956 году – нейтрино, предсказанное Паули. Элементарные частицы посыпались, как горох из разорвавшегося мешка.

– Ой! – Галатея посмотрела на свои загнутые пальцы: её персональный компьютер исчерпал память.