Принимая во внимание тот факт, что «добро» на съемки дается за несколько лет до того, как фильм будет снят и что судьба фильма зависит от многих непредвиденных моментов, возникающих в процессе производства картины и ее реализации, а еще от вкуса зрителей, который невозможно предугадать, теория Голдмана не кажется притянутой за уши (в ее пользу говорят и недавние экономические исследования[14]). Тем не менее руководство студии судят не за управленческие способности, основу всех основ, которыми в равной степени должны обладать и глава американской сталелитейной компании, и глава «Парамаунт Пикчерз». Наоборот, его ценят за умение выбирать из множества сценариев будущие хиты. И если Голдман прав, то умение это не более чем иллюзия, и как бы глава студии ни пыжился, его заслуга в подписании контракта на 25 млн долларов невелика.

Рассчитать, в какой степени результат зависит от умений и в какой от удачи, элементарно. Случайные события зачастую происходят с такой же частотностью, с какой в коробке овсянки встречаются изюминки – группами, слоями, слипшимися комочками. И хотя Судьба справедлива, предоставляя потенциальные возможности, она ничуть не справедлива в том, что касается результата. К примеру, 10 человек из руководства голливудской киностудии подбросят 10 монет. У каждого равные шансы выиграть или проиграть, но в конечном счете обязательно будут как выигравшие, так и проигравшие. Если брать данный пример, то вероятность того, что хотя бы у одного из руководителей выпадет 8 или более орлов или решек, равна 2 из 3.

Представьте, что Джордж Лукас снимает новые «Звездные войны» и решается на безумный эксперимент. Он выпускает один фильм под двумя названиями: «Звездные войны: Эпизод А» и «Звездные войны: Эпизод В». У каждого фильма будет своя маркетинговая кампания, свое прокатное расписание, но все остальное – одинаковое, за исключением того, что в рекламных роликах-анонсах и на афишах в одном случае будет упоминаться «Эпизод А», в другом – «Эпизод В». И вот между этими двумя фильмами идет соревнование. Какой окажется популярней? Возьмем первых 20 тыс. зрителей и отметим, какой из фильмов они выбрали (при этом не будем учитывать тех отъявленных фанатов, которые пойдут на оба фильма, а потом будут с пеной у рта доказывать, что заметили тонкие, едва уловимые различия). Поскольку сами фильмы и рекламные кампании вокруг них одинаковы, можно смоделировать ситуацию, прибегнув к математическим построениям. Положим, все зрители выстроятся в очередь, каждый подбросит монету. Если выпадет орел, зритель смотрит «Эпизод А», если решка – «Эпизод В». Шансы, что выпадет орел или решка, равны, и можно подумать, что в этом состязании касс за зрителя каждый фильм получит примерно по половине зрителей. Однако согласно подсчетам математики случайного выходит иначе: наиболее вероятным количеством изменений лидирующей позиции будет 0, и в 88 раз больше будет вероятность того, что один из двух фильмов посмотрят все 20 тыс. зрителей, нежели что лидирующая позиция будет постоянно переходить то к одному фильму, то к другому[15]. Это говорит не о том, что между фильмами нет никакой разницы, а о том, что некоторые кинокартины посмотрит большее количество зрителей, даже если все фильмы одинаковы.

Подобные вопросы не обсуждаются ни в зале заседаний правления, ни в Голливуде, ни где-либо еще, поэтому типичные случайные последовательности типа очевидных «черных» или «белых полос» или «одного к одному» (сбивания в кучу неких разрозненных данных) обыкновенно истолковываются неверно, а то и вообще считаются новой тенденцией и руководством к действию.