Веса синапсов нейронной сети, управляющей поведением агента, составляют геном агента. Геном потомка (рождаемого при скрещивании) формируется на основе геномов родителей при помощи рекомбинаций и мутаций.

В проведенных компьютерных экспериментах моделировалась эволюция популяции агентов. Нейронная сеть агентов исходной популяции определяла некоторые простые изначальные инстинкты, обеспечивающие питание и размножение агентов. Далее наблюдалось, как в процессе эволюции изменялись нейронная сеть агентов и определяемое ею поведение агентов.

Для того чтобы исследовать влияние мотиваций на поведение агентов, были проведены две серии экспериментов. В первой серии моделировалась эволюция популяции агентов с «выключенными» мотивациями (входы нейронов от мотиваций были «задавлены»), во второй серии мотивации «работали» (так, как это изложено выше).


Основные результаты проведенного моделирования таковы:

– Мотивации играют важную роль в исследованных эволюционных процессах. А именно: если сравнить популяцию агентов без мотиваций с популяцией агентов с мотивациями, то, как показывают компьютерные эксперименты, эволюционный процесс приводит к тому, что вторая популяция (с мотивациями) имеет значительные эволюционные преимущества по сравнению с первой (без мотиваций).



>Рис. 6. Схема управления агента без мотиваций. Поведение агента состоит из одних только простых безусловных рефлексов, при котором выбор действия напрямую определяется текущим состоянием окружающей среды.


– Результаты моделирования также демонстрируют (рис. 6, 7), что управление поведением агента без мотиваций можно рассматривать как набор простых инстинктов (несколько отличающихся от изначально заданных), а управление агентом с мотивациями – как иерархическую систему управления, состоящую из двух уровней: уровня простых инстинктов и метауровня, обусловленного мотивациями. При этом иерархическая система управления обеспечивает более эффективное управление, чем одноуровневая система, в которой поведение определяется одними лишь простыми инстинктами.



>Рис. 7. Схема управления агента, обладающего мотивациями. Мотивации формируют новый уровень иерархии в системе управления агентами.


Понятно, что очерченная модель только лишь характеризует роль мотиваций, целенаправленности в адаптивном поведении и еще далека от моделей реальных когнитивных процессов. Тем не менее она дает определенный вклад в понимание работы функциональных систем и опору для развития моделей более интеллектуальных процессов.

7. Некоторые концептуальные аспекты

Как уже отмечалось выше, целесообразно сочетание построения базовых математических моделей с развитием концептуальных подходов к этому моделированию. Отметим некоторые концептуальные аспекты, которые могут быть полезны при моделировании когнитивной эволюции.

Два метасистемных перехода. Отметим два ключевых перехода, которые было бы интересно осмыслить в рамках работ по анализу когнитивной эволюции: 1) переход от физического уровня обработки информации в нервной системе животных к уровню обобщенных образов и 2) переход от первобытного мышления к критическому.

Оба перехода можно характеризовать термином «метасистемный переход» [9]. Очень упрощенно и кратко метасистемный переход можно определить как возникновение качественно нового уровня управления поведением в результате объединения систем управления предыдущего уровня иерархии.

1) Переход от физического уровня обработки информации в нервной системе животных к уровню обобщенных образов можно рассматривать как появление в «сознании» животного свойства «понятие». Обобщенные образы можно представить как мысленные аналоги наших слов, не произносимых животными, но реально используемых ими. Например, у собаки явно есть понятия «хозяин», «свой», «чужой», «пища»… И было бы интересно постараться осмыслить, как такой весьма нетривиальный «метасистемный переход» мог произойти в процессе эволюции.