Получается, сформулировать уравнения, согласующиеся как с принципом относительности, так и с принципами квантовой механики, довольно сложно. Это смогли обеспечить лишь релятивистские квантовые теории поля, содержащие много основных величин, которые либо плохо определены, либо – формально – бесконечны. При моделировании физического мира могут быть использованы только тщательно подобранные комбинации, в которых бесконечности взаимно уничтожаются. Чтобы их оказалось достаточно, структурой квантовой механики нужно пользоваться очень специфичным образом. Неопределенность при этом полностью устраняется. Поиск теорий, реализующих наши основные принципы, затрудняется тем, что они находятся на грани непротиворечивости. Зато эти теории основательны. Это приводит нас к очень специфическим уравнениям и процедурам, стойкость которых к изменениям обеспечивает их долговечность.

Новые принципы

Два следствия основополагающих законов настолько фундаментальны и важны, что заслуживают упоминания даже в этом кратком обзоре.

Первичными объектами в природе являются заполняющие пространство и постоянные (то есть заполняющие время) поля. Частицы – такие, как электроны – являются возбуждениями соответствующего поля. Таким образом, все электроны обладают одинаковыми свойствами, где бы и когда бы они ни встречались, потому что каждый из них является возбуждением одного и того же поля. Точное сходство всех электронов (и других элементарных частиц) имеет огромное значение. В ходе промышленной революции XIX века важнейшим шагом вперед стала разработка взаимозаменяемых деталей: это обеспечило возможность массового производства, сборки и ремонта. Подобным же образом на изобилие в природе взаимозаменяемых объектов опираются химия, биология и инженерия.

Когда электроны и атомное ядро соединяются в атом, или кварки и глюоны соединяются в протон, получившийся объект имеет неповторимую и стабильную структуру, которая не может быть изменена без применения значительного количества энергии. (Это контрастирует с системами, основанными на классической механике, такими как планетные системы звезд, которые могут произвольно поглощать некоторое количество энергии за счет небольших изменений в их структуре.) Такая «квантовая цензура» означает, что при соответствующих обстоятельствах (когда энергии не так много) мы можем рассматривать атом или протон как черный ящик, внутренняя структура которого от нас скрыта. Так, например, при проектировании транзистора не нужно думать о кварках и глюонах.

Эти два следствия фундаментальных законов позволяют нам поэтапно наращивать наш синтез картины природы и использовать при работе с большим числом неотличимых сущностей статистические методы. Таким образом, они подвели под многие распространенные методики химиков и инженеров прочную базу, позволив рассматривать их как следствия «сокращения» круга используемых понятий.

Строительные блоки

Стандартные элементарные описания материи представляют протоны и нейтроны как строительные блоки атомных ядер. Затем электроны заполняют большую часть атомов, а те, в свою очередь, объединяются в молекулы, молекулы – в различные материалы. Для отображения текущего положения дел эта схема нуждается в нескольких уточнениях.

Во-первых, как упоминалось ранее, теперь мы понимаем, что неестественно и не нужно отделять свет от материи. Фотоны – такая же материя, как и все остальное.

Во-вторых, мы должны избавиться от мысли о том, что протоны и нейтроны являются подходящими объектами для фундаментального изучения. Согласно результатам экспериментов, это составные объекты, обладающие сложной внутренней структурой. Базовые частицы, из которых состоят протоны и нейтроны, называются кварками и глюонами. Все имеющиеся данные подтверждают: последние подчиняются идеально простым уравнениям квантовой хромодинамики (КХД). Существуют два важных вида кварков: верхние (или