– Нас выручают индексы, – те маленькие цифры, которые мы помещаем при буквах: а>1, а>2, а>3, а>4, и т. д. Для этого понадобится лишь еще один или два ряда цифр от 0 до 9. Аналогичным образом можно условно обозначать и любые звуки чужих языков.

– Если так, то потребуется, я думаю, не более сотни различных знаков, чтобы выразить печатными строками все мыслимое[3].

– Теперь дальше. Какой толщины взять тома?

– Я полагаю, что можно вполне обстоятельно исчерпать тему, если посвятить ей том в 500 страниц. Считая на странице по 40 строк с 50 типографскими знаками в каждой (включаются, конечно, шпации и знаки препинания), имеем 40 × 50 × 500 букв в одном томе, то есть… впрочем, ты подсчитаешь это лучше…

– Миллион букв, – сказал профессор. – Следовательно, если повторять наши 100 литер в любом порядке столько раз, чтобы составился том в миллион букв, мы получим некую книгу. И если вообразим все возможные сочетания этого рода, какие только осуществимы чисто механическим путем, то получим полный комплект сочинений, которые когда-либо были написаны в прошлом или появятся в будущем.

Буркель хлопнул своего друга по плечу.

– Идет! Беру абонемент в твоей универсальной библиотеке. Тогда получу готовыми, в напечатанном виде, все полные комплекты моей газеты за будущие годы. Не будет больше заботы о подыскании материала. Для издателя – верх удобства: полное исключение авторов из издательского дела. Замена писателя комбинирующей машиной, неслыханное достижение техники!

– Как! – воскликнула хозяйка. – В твоей библиотеке будет решительно все? Полный Гёте? Собрание сочинений всех когда-либо живших философов?

– Со всеми разночтениями, притом, какие никем еще даже не отысканы. Ты найдешь здесь полностью все утраченные сочинения Платона или Тацита и в придачу – их переводы. Далее, найдешь все будущие мои и твои сочинения, все давно забытые речи депутатов рейхстага и все те речи, которые еще должны быть там произнесены, полный отчет о международной мирной конференции и о всех войнах, которые за нею последуют… Что не уместится в одном томе, может быть продолжено в другом.

– Ну, благодарю за труд разыскивать продолжения.

– Да, отыскивать будет хлопотливо. Даже и найдя том, ты еще не близок к цели: ведь там будут книги не только с надлежащими, но и с всевозможными неправильными заглавиями.

– А ведь верно, так должно быть!

– Встретятся и иные неудобства. Возьмешь, например, в руки первый том библиотеки. Смотришь: первая страница – пустая, вторая – пустая, третья – пустая и т. д. все 500 страниц. Это тот том, в котором шпация повторена миллион раз…

– В такой книге не может быть, по крайней мере, ничего абсурдного, – заметила хозяйка.

– Будем утешаться этим. Берем второй том: снова все пустые страницы, и только на последней, в самом низу, на месте миллионной литеры приютилось одинокое а. В третьем томе – опять та же картина, только а передвинуто на одно местечко вперед, а на последнем месте – шпация. Таким порядком буква а последовательно передвигается к началу, каждый раз на одно место, через длинный ряд из миллионов томов, пока в первом томе второго миллиона благополучно достигнет, наконец, первого места. А за этой буквой в столь увлекательном томе нет ничего – белые листы. Такая же история повторяется и с другими литерами в первой сотне миллионов наших томов, пока все сто литер не совершат своего одинокого странствования от конца тома к началу. Затем то же самое происходит с группою аа и с любыми двумя другими литерами во всевозможных комбинациях. Будет и такой том, где мы найдем одни только точки; другой – с одними лишь вопросительными знаками.