Жизнь Диофанта

ЗАДАЧА

История сохранила нам мало черт биографии замечательного древнего математика Диофанта. Все, что известно о нем, почерпнуто из надписи на его гробнице – надписи, составленной в форме математической задачи. Мы приведем эту надпись.



РЕШЕНИЕ

Решив уравнение и найдя, что x = 84, узнаем следующие черты биографии Диофанта; он женился 21-го года, стал отцом на 38-м году, потерял сына на 80-м году и умер 84-х лет.

Лошадь и мул

ЗАДАЧА

Вот еще несложная старинная задача, легко переводимая с родного языка на язык алгебры.

«Лошадь и мул шли бок о бок с тяжелой поклажей на спине. Лошадь жаловалась на свою непомерно тяжелую ношу. «Чего ты жалуешься? – отвечал ей мул. – Ведь если я возьму у тебя один мешок, ноша моя станет вдвое тяжелее твоей. А вот если бы ты сняла с моей спины один мешок, твоя поклажа стала бы одинакова с моей».

Скажите же, мудрые математики, сколько мешков несла лошадь и сколько нес мул?»


РЕШЕНИЕ


Мы привели задачу к системе уравнений с двумя неизвестными:


Решив ее, находим: х = 5, y = 7. Лошадь несла 5 мешков и 7 мешков – мул.

Четверо братьев

ЗАДАЧА

У четырех братьев 45 рублей. Если деньги первого увеличить на 2 рубля, деньги второго уменьшить на 2 рубля, деньги третьего увеличить вдвое, а деньги четвертого уменьшить вдвое, то у всех окажется поровну. Сколько было у каждого?


РЕШЕНИЕ


Расчленяем последнее уравнение на три отдельных:


откуда


Подставив эти значения в первое уравнение, получаем:


откуда х = 8. Далее находим: y = 12, z = 5, t = 20. Итак, у братьев было:


8 руб., 12 руб., 5 руб., 20 руб.

Птицы у реки

ЗАДАЧА

У одного арабского математика XI века находим следующую задачу.

На обоих берегах реки растет по пальме, одна против другой. Высота одной – 30 локтей, другой – 20 локтей; расстояние между их основаниями – 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами; они кинулись к ней разом и достигли ее одновременно.

Рис. 1


На каком расстоянии от основания более высокой пальмы появилась рыба?


РЕШЕНИЕ

Из схематического чертежа (рис. 2), пользуясь теоремой Пифагора, устанавливаем:


AB>2 = 30>2 + x>2, AC>2 = 20>2 + (50 – x)>2.


Рис. 2


Но АВ = АС, так как обе птицы пролетели эти расстояния в одинаковое время. Поэтому

Продолжите чтение, купив полную версию книги
Купить полную книгу