В реальности все прошло не так гладко, и нам с Сомсом пришлось вмешаться после того, как полиция упустила нужного человека. К счастью, три посылки, которые надлежащим порядком прибыли к нам на следующий день вечерней почтой, принесли новые улики, и мы обнаружили, что это убийство было частью более обширного заговора. Извилистые пути, которыми двигалось наше расследование, и леденящие кровь тайны, которые мы откопали – в буквальном смысле, – как я уже объяснил, никогда не будут преданы гласности. Но в конце концов мы поймали преступника. И Сомс позволил мне открыть ответы на два вопроса, которые сыграли главную роль во всем этом расследовании.


Каких размеров были две коробки, с которых все началось? Каких размеров должны быть три коробки, чтобы они обладали такими же свойствами?

Ответы см. в главе "Загадки разгаданные".

RATS-последовательность

1, 2, 4, 8, 16, … Что дальше? Очень соблазнительно, особо не задумываясь, назвать в качестве следующего числа 32. Но что, если я скажу, что последовательность, которую я имел в виду, на самом деле выглядит так:

1 2 4 8 16 77 145 668.

Что теперь скажете про следующий член последовательности? Разумеется, единственного правильного ответа на этот вопрос не существует: придумав достаточно хитрые правила, можно подобрать формулу для любой конечной последовательности. Карл Линдерхольм в книге «Непростая математика» (Mathematics Made Difficult) посвятил целую главу объяснению того, почему на вопрос «Каков следующий член данной последовательности?» всегда можно отвечать: «19». Но вернемся к нашей последовательности: для нее существует простое правило. На него указывает название этой главки, но должен признать, что указание это слишком невнятно, чтобы из него можно было что-то извлечь.


Ответ см. в главе "Загадки разгаданные".

Дни рождения полезны

Статистика показывает, что люди, у которых больше всего дней рождения, живут дольше всех.

Ларри Лоренцони

Математические даты

В последние годы многие календарные даты оказались связаны с различными аспектами математики, в результате чего были объявлены особыми днями. Никто не придает таким дням никакого особого значения; все ограничивается исключительно численным сходством. Эти даты не предсказывают конца света или чего-то подобного – по крайней мере, насколько нам известно. В эти дни не происходит ничего особенного, их отмечают исключительно математики и иногда упоминают в СМИ. Но они забавны и дают средствам массовой информации лишний повод заинтересоваться серьезной математикой. Или хотя бы упомянуть математику в своих публикациях.

Можно назвать несколько таких дат. Многие из них связаны с американской системой датировки, где первым указывается не число, а месяц. Опять же, допускаются кое-какие календарные вольности: так, нули иногда можно опускать.

День числа π

14 марта, или, в американской системе датировки, 3/14 (π ~ 3,14). В Сан-Франциско это квазиофициальный день с 1988 г. Палата представителей США приняла необязывающую резолюцию, в которой признала этот день.

Минута π

14 марта, время 1:59. В американской системе это записывается как 3/14 1.59 (π ~ 3,14159). Можно и еще точнее: момент времени 1.59 и 26 секунд. 3/14 1:59:26 (π ~ 3,1415926).

День приближенного значения π

22 июля, в британской системе датировки записывается как 22/7 (π ~ 22/7).

День 123456789

Жаль, но вы его пропустили. Этот единственный момент наступил 7 августа 2009 г. (по британской системе), или 8 июля 2009 г. (по американской системе), вскоре после 12:34. Дату и время этого момента можно записать как 12:34:56 7/8/(0) 9. Но некоторые из вас, возможно, еще увидят «День 1234567890» в 2090 г.