Алгоритмы глубокого обучения могут маркировать и классифицировать информацию и идентифицировать шаблоны – закономерности.

Это то, что позволяет системам искусственного интеллекта постоянно учиться в процессе работы и повышать качество и точность результатов, определяя правильность принятых решений.

Идея искусственных нейронных сетей основывается на биологических нейронных сетях, хотя они работают совсем по-другому.

Нейронная сеть в ИИ представляет собой набор небольших вычислительных блоков, называемых нейронами, которые принимают входящие данные и учатся принимать решения с течением времени.

Нейронные сети часто являются многоуровневыми и становятся более эффективными по мере увеличения объема наборов данных, в отличие от других алгоритмов машинного обучения.

Теперь, давайте разберем еще одно важное различие, которое важно понять, – это различие между искусственным интеллектом и наукой о данных.

Наука о данных – это процесс и метод извлечения знаний и идей из больших объемов разнородных данных.

Это междисциплинарная область, включающая математику, статистический анализ, визуализацию данных, машинное обучение и многое другое.

Это то, что позволяет нам обрабатывать информацию, видеть закономерности, находить смысл в больших объемах данных и использовать информацию для принятия решений.

И наука о данных, Data Science может использовать многие методы искусственного интеллекта, чтобы получить представление о данных.

Например, наука о данных может использовать алгоритмы машинного обучения и даже модели глубокого обучения, чтобы извлечь смысл и сделать выводы из данных.

Существует некоторое пересечение между ИИ и наукой о данных, но одно не является подмножеством другого.

Наоборот, наука о данных – это более широкий термин, охватывающий всю методологию обработки данных.

А ИИ включает в себя все, что позволяет компьютерам учиться решать задачи и принимать разумные решения.

И ИИ, и Data Science могут использовать большие данные.

Машинное обучение, подмножество искусственного интеллекта, использует компьютерные алгоритмы для анализа данных и принятия разумных решений на основе того, что алгоритмы изучили.

Вместо того, чтобы следовать алгоритмам, основанным на правилах, машинное обучение само строит модели для классификации и прогнозирования на основе данных.

Например, что, если мы хотим определить, может ли возникнуть проблема с нашим сердцем, с помощью машинного обучения?

Можем ли мы это сделать.

И ответ – да.

Допустим, нам даны такие данные, как количество ударов в минуту, вес тела, возраст и пол.

С машинным обучением и этим набором данных, мы можем изучить и создать модель, которая с учетом входных данных будет предсказывать результаты.

Так в чем же разница между этим подходом и просто использования статистического анализа для создания алгоритма?

Алгоритм – это математическая техника.

В традиционном программировании мы берем данные и правила и используем их для разработки алгоритма, который даст нам ответ.

В этом примере, если бы мы использовали традиционный алгоритм, мы бы взяли данные, такие как сердечный ритм, возраст, вес тела и пол и использовали эти данные для создания алгоритма, который определит, будет ли сердце работать нормально или нет.

По сути, это было бы выражение if – else.

Когда мы отправляем входные данные, мы получаем ответы, основанные на том, какой алгоритм мы определили, и этот алгоритм не изменится от данных.

Машинное обучение, с другой стороны, берет данные и ответы и уже потом само создает алгоритм.