Эта реакция получила название реакции Ломана. Запасы креатинфосфата в волокне невелики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы – в первые несколько секунд.
После того как запасы креатинфосфата будут исчерпаны примерно на 1/3, скорость этой реакции начнет снижаться, а это вызовет включение других процессов ресинтеза АТФ – гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.
Расщепление креатинфосфата играет основную роль в энергообеспечении кратковременных упражнений максимальной мощности – бег на короткие дистанции, прыжки, метание, тяжелоатлетические и силовые упражнения – продолжительностью до 20–30 с.
Гликолиз. Это процесс распада одной молекулы глюкозы (C>6H>6O>6) на две молекулы молочной кислоты (C>3H>6O>3) с выделением энергии, достаточной для «зарядки» двух молекул АТФ:
C>6H>12O>6(глюкоза) + 2H>3PO>4+ 2АДФ =2C>3H>6O>3(молочная кислота) + 2АТФ + 2H>2O.
Гликолиз протекает без потребления кислорода (такие процессы называются анаэробными).
Тут нужно сделать два важных замечания:
а) примерно половина всей выделяемой в данном процессе энергии превращается в тепло и не может использоваться при работе мышц. При этом температура мышц повышается до 41–42 градусов Цельсия;
б) энергетический эффект гликолиза невелик и составляет всего 2 молекулы АТФ из 1 молекулы глюкозы.
Гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 до 150 с. К ним относятся бег на средние дистанции, плавание на 100–200 м, велосипедные гонки, длительные ускорения.
Кислородное окисление. Для полноценного включения в действие кислородного окисления глюкозы требуется больше времени. Скорость окисления становится максимальной лишь через 1,5–2 минуты работы мышц, этот эффект широко известен как «второе дыхание».
Распад глюкозы в присутствии кислорода идет сложным путем. Это многостадийный процесс, включающий в себя цикл Кребса и многие другие превращения, но суммарный результат может быть выражен следующей записью:
C>6H>12O>6 (глюкоза) + 6O>2+ 38АДФ + 38H>3PO>4= 6CO>2+ 44H>2О + 38АТФ.
То есть распад глюкозы по кислородному (аэробному) пути дает в итоге с каждой молекулы глюкозы 38 молекул АТФ. Таким образом, кислородное окисление энергетически в 19 раз эффективнее бескислородного гликолиза. Но за все надо платить – в данном случае платой за большую эффективность является затянутость процесса. Получение молекул АТФ при кислородном окислении возможно только в митохондриях, а там АТФ недоступна АТФазам, которые находятся во внутриклеточной жидкости, – внутренняя мембрана митохондрий непроницаема для заряженных нуклеотидов. Поэтому АТФ из митохондрий доставляется во внеклеточную жидкость достаточно сложным путем, при этом используются различные ферменты, что в целом существенно замедляет процесс получения энергии.