– длинная малоберцовая мышца; 29 – длинный сгибатель пальцев стопы; 30 – передняя большеберцовая мышца; 31 – боковая головка икроножной мышцы; 32 – головка малоберцовой кости; 33 – коленная связка; 34 – двуглавая мышца бедра; 35 – латеральная широкая мышца бедра; 36 – прямая мышца бедра; 37 – мышца, напрягающая широкую фисцию бедра; 38 – большая ягодичная мышца; 39 – косая наружная мышца живота; 40 – передняя зубчатая мышца; 41 – надкостная мышца; 42 – широчайшая мышца спины; 43 – большая круглая мышца; 44 – малая круглая мышца; 45 – боковая головка трицепса; 46 – плечевая мышца; 47 – двуглавая мышца плеча; 48 – локтевой разгибатель кисти; 49 – короткий лучевой разгибатель кисти; 50 – общий разгибатель пальцев; 51 – длинная отводящая мышца большого пальца; 52 – длинный лучевой разгибатель кости; 53 – плечелучевая мышца


Эта реакция получила название реакции Ломана. Запасы креатинфосфата в волокне невелики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы – в первые несколько секунд.

После того как запасы креатинфосфата будут исчерпаны примерно на 1/3, скорость этой реакции начнет снижаться, а это вызовет включение других процессов ресинтеза АТФ – гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Расщепление креатинфосфата играет основную роль в энергообеспечении кратковременных упражнений максимальной мощности – бег на короткие дистанции, прыжки, метание, тяжелоатлетические и силовые упражнения – продолжительностью до 20–30 с.

Гликолиз. Это процесс распада одной молекулы глюкозы (C>6H>6O>6) на две молекулы молочной кислоты (C>3H>6O>3) с выделением энергии, достаточной для «зарядки» двух молекул АТФ:


C>6H>12O>6(глюкоза) + 2H>3PO>4+ 2АДФ =2C>3H>6O>3(молочная кислота) + 2АТФ + 2H>2O.


Гликолиз протекает без потребления кислорода (такие процессы называются анаэробными).

Тут нужно сделать два важных замечания:

а) примерно половина всей выделяемой в данном процессе энергии превращается в тепло и не может использоваться при работе мышц. При этом температура мышц повышается до 41–42 градусов Цельсия;

б) энергетический эффект гликолиза невелик и составляет всего 2 молекулы АТФ из 1 молекулы глюкозы.

Гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 до 150 с. К ним относятся бег на средние дистанции, плавание на 100–200 м, велосипедные гонки, длительные ускорения.

Кислородное окисление. Для полноценного включения в действие кислородного окисления глюкозы требуется больше времени. Скорость окисления становится максимальной лишь через 1,5–2 минуты работы мышц, этот эффект широко известен как «второе дыхание».

Распад глюкозы в присутствии кислорода идет сложным путем. Это многостадийный процесс, включающий в себя цикл Кребса и многие другие превращения, но суммарный результат может быть выражен следующей записью:


C>6H>12O>6 (глюкоза) + 6O>2+ 38АДФ + 38H>3PO>4= 6CO>2+ 44H>2О + 38АТФ.


То есть распад глюкозы по кислородному (аэробному) пути дает в итоге с каждой молекулы глюкозы 38 молекул АТФ. Таким образом, кислородное окисление энергетически в 19 раз эффективнее бескислородного гликолиза. Но за все надо платить – в данном случае платой за большую эффективность является затянутость процесса. Получение молекул АТФ при кислородном окислении возможно только в митохондриях, а там АТФ недоступна АТФазам, которые находятся во внутриклеточной жидкости, – внутренняя мембрана митохондрий непроницаема для заряженных нуклеотидов. Поэтому АТФ из митохондрий доставляется во внеклеточную жидкость достаточно сложным путем, при этом используются различные ферменты, что в целом существенно замедляет процесс получения энергии.