Очевидно, что лишь существенное для наиболее общей пропозициональной формы может быть включено в ее описание – иначе это уже не будет наиболее общей формой.
Существование общей пропозициональной формы доказывается тем фактом, что нет суждения, формы которого нельзя было бы предугадать (то есть сконструировать). Общая форма суждения такова: что-либо имеет место.
4.51. Предположим, что мне задали все элементарные суждения; тогда я просто спрошу: какие суждения я могу составить из них? И у меня были бы все суждения, и так устанавливались бы их границы.
4.52. Суждения включают все, что следует из совокупности элементарных суждений (и, конечно, из того обстоятельства, что это совокупность их всех).
(Так, в известном смысле, можно сказать, что все суждения суть обобщения элементарных суждений.)
4.53. Общая пропозициональная форма – переменная.
5. Суждение – функция истинности элементарных суждений. (Элементарное суждение есть собственная функцияистинности.)
5.01. Элементарные суждения выступают аргументами истинности суждений.
5.02. Аргументы функций нередко смешивают с индексами имен. Поскольку и аргументы, и индексы позволяют узнавать значения знаков, их содержащих.
Например, когда Рассел пишет: «+ >c», «c» представляет собой индекс, который указывает, что данный знак есть дополнительный знак количественного числа. Но использование этого знака является результатом произвольной договоренности, и вполне возможно выбрать простой знак вместо «+>c»; но в выражении «~p» «p» является не индексом, а аргументом: смысл выражения «~p» нельзя понять до тех пор, пока нам неизвестен смысл «p». (В имени «Юлий Цезарь» индексом будет «Юлий». Индекс всегда часть описания объекта, к имени которого мы его прибавляем; в данном случае Цезарь из рода Юлиев.)
Если я не ошибаюсь, теория Фреге относительно значения суждений и функций основана на смешении аргументов и индексов. Фреге рассматривал логические суждения как имена, а их аргументы – как индексы этих имен.
5.1. Функции истинности могут организовываться в последовательности. Вот основа теории вероятности.
5.101. Функции истинности заданного числа элементарных суждений всегда можно отразить в схеме следующего вида:
(ИИИИ) (p, q) Тавтология (если p, то p, и если q, то q) (p ⊃ p × q ⊃ q)
(ЛИИИ) (p, q) Словами: Не p и не q вместе. [~ (p × q)]
(ИЛИИ) (p, q) Словами: Если q, то p. [q ⊃ p]
(ИИЛИ) (p, q) Словами: Если p, то q. [p ⊃ q]
(ИИИЛ) (p, q) Словами: p или q. [p ∨ q]
(ЛЛИИ) (p, q) Словами: Не q. [~q]
(ЛИЛИ) (p, q) Словами: Не p. [~p]
(ЛИИЛ) (p, q) Словами: p или q, но не вместе. [p × ~q: ∨: q × ~p]
(ИЛЛИ) (p, q) Словами: Если p, то q, и если q, то p. [p ≡ q]
(ИЛИЛ) (p, q) Словами: p.
(ИИЛЛ) (p, q) Словами: q.
(ЛЛЛИ) (p, q) Словами: Ни p, ни q. [~p × ~q или p | q]
(ЛЛИЛ) (p, q) Словами: p, но не q. [p × ~q]
(ЛИЛЛ) (p, q) Словами: q, но не p. [q × ~p]
(ИЛЛЛ) (p, q) Словами: q и p. [q × p]
(ЛЛЛЛ) (p, q) Противоречие (p и не p, и q и не q).[p × ~p. q × ~q]
Я назову основаниями истинности суждения те возможности истинности его истинностных аргументов, которые делают суждение истинным.
5.11. Если все основания истинности, общие какому-либо числу суждений, являются и основаниями истинного некоего конкретного суждения, мы говорим, что истинность этого суждения следует из истинности других.
5.12. В частности, истинность суждения «p» следует из истинности суждения «q», если все основания истинности последнего являются и основаниями истинности первого.
5.121. Основания истинности одного содержатся в основаниях истинности другого: