Однако дивный новый мир микробной эволюции оказался недолговечным – эволюционная геномика вновь запутала картину самым неожиданным образом. Первый полный бактериальный геном был секвенирован в 1995 году, а первый геном археи – в 1996-м[48]. Вскоре после этого прорыва установился экспоненциальный темп секвенирования геномов со временем удвоения около 20 месяцев для бактерий и около 34 месяцев для архей (см. рис. 3–1). Сравнительный анализ сотен секвенированных бактериальных геномов и десятков геномов архей привел к важнейшему выводу: микробы определенно эволюционируют, но их эволюция сильно отличается от той, что описана СТЭ (Doolittle, 1999b; Woese and Goldenfeld, 2009). Ключевым стало осознание того, что геномы прокариот ведут себя не так, как если бы они были стабильными, точно наследуемыми носителями генетической информации организма (вида). Геномы микробов оказались чрезвычайно динамичными, неоднородными образованиями, которые относительно стабильны лишь на коротких интервалах времени, имеют свою характерную скорость распада и существуют в динамическом равновесии между различными формами жизни, которые отличаются по принципам геномной организации. В «мире прокариот» эти взаимосвязанные и постоянно взаимодействующие формы жизни включают не только бактерии и археи, но также различные плазмиды, вирусы и другие мобильные элементы. В этой новой, динамической парадигме прокариотической эволюции традиционная концепция видов с четко определенным, стабильным геномом теряет существенную, если не большую часть своей применимости (Doolittle and Zhaxybayeva, 2009). Становится осмысленнее говорить о сериях «пангеномов» на всех уровнях, от пангенома, например, Escherichia coli или любого другого «вида» бактерий или архей, до пангенома всех прокариот (Lapierre and Gogarten, 2009; Mira et al., 2010).

В главе 3 мы уже обсуждали важные аспекты структуры генетической вселенной прокариот. Она рассматривалась в основном как сложный статичный объект, то есть в терминах распределения различных существенных переменных. В этой главе мы также рассматриваем распределения, но в основном пытаемся встать на динамическую точку зрения и исследовать мир прокариот в терминах потоков генов и взаимодействия между репликонами.

Размер и общая организация бактериальных и архейных геномов

Несмотря на огромные различия в образе жизни, а также метаболической и геномной организации, бактериальные и архейные геномы демонстрируют легко различимые общие архитектурные принципы (см. обзор в гл. 3). Секвенированные бактериальные и архейные геномы охватывают два порядка величины по размерам от около 144 Кб для внутриклеточного симбионта Hodgkinia cicadicola до примерно 13 Мб для обитающей в почве бактерии Sorangium cellulosum (Koonin and Wolf, 2008b). Примечательно, что бактерии демонстрируют бимодальное распределение размеров генома[49] с пиком в районе примерно 5 Мб и дополнительным плато в районе примерно 2 Мб (см. рис. 5–1). Хотя существует много геномов промежуточного размера, это распределение предполагает существование двух в достаточной степени разделенных классов бактерий с «малым» и «большим» геномами. К этим наблюдениям нужно относиться с известной осторожностью, так как они могут быть артефактом, обусловленным предпочтительным секвенированием небольших геномов (в первую очередь бактериальных патогенов), но с ростом числа секвенированных геномов такое объяснение становится все менее удовлетворительным.

Археи демонстрируют более узкое, но также сложное распределение размеров генома от примерно 0,5 Мб у паразита/симбионта