Сравнение геномных наборов H. influenzae и M. genitalium дало 240 пар ортологичных генов, охватывающих большую часть очевидно существенных клеточных функций. Тем не менее в этом консервативном наборе несколько важных функций явно отсутствовали. До сих пор мы не говорили о «настоящей биологии», о биологических функциях, ролях генов, но теперь мы должны начать думать биологически. Определение минимального набора основных биологических функций – задача непростая. Соблазнительно, конечно, попытаться «разобрать эволюцию по винтику»: идя от сравнительной геномики, определить минимальный набор основных генов, сохраняемых во всех клеточных формах жизни. Но этот подход упускает возможность, что разные организмы могли прийти к решению одной и той же принципиальной задачи независимыми путями. Мы увидим далее в этой главе, что такая гипотетическая возможность действительно отражает важный аспект биологической реальности. Таким образом, чтобы очертить минимальный набор клеточных функций, нам необходимо обратиться к логике биохимии и клеточной биологии. Знаний в этих областях несомненно достаточно, чтобы составить разумный каталог основных функций. Само собой, это знание несовершенно, поэтому на самом деле вычисление минимального набора генов требует многократного поочередного обращения к биологическому обоснованию и сравнительному геномному анализу. Мы с Аркадием Мушегяном предположили, что принципиально важные функции, отсутствующие среди 240 ортологов H. influenzae и M. genitalium, вероятно, исполняются неродственными или отдаленно родственными белками в этих двух бактериях. Мы привлекли определенные догадки, чтобы увеличить предполагаемый минимальный набор на 16 дополнительных генов M. genitalium (см. рис. 3-10). Этот простое упражнение в получении минимального набора генов соединением сравнительной геномики и биологической логики оказалось достаточно успешным и, по-видимому, определило приближенный функциональный репертуар простейшей бактериальной клетки, способной к самостоятельному росту в наиболее благоприятных условиях. В самом деле, последующие эксперименты с нокаутом генов подтвердили, что большинство из генов, включенных в минимальный набор, необходимы для выживания бактерий и что гены из минимального набора присутствуют в большинстве (хотя и не обязательно во всех) вновь секвенированных бактериальных геномах (Delaye and Moya, 2010; Koonin, 2003).
Рис. 3-10. Выделение минимального набора генов клеточной жизни методами сравнительной геномики. G1, G2, G3 – три сравниваемых генома; С – набор консервативных генов.
Рис. 3-11. Распределение числа генов по биологическим функциям в минимальном генном наборе, полном наборе КОГ и среди экспериментально определенных незаменимых генов бактерии Bacillus subtilis. Данные по Koonin, 2003.
Поучительно провести теперь функциональную перепись минимального бактериального набора генов. В этом наборе преобладают гены, которые кодируют белки, участвующие в передаче информации в клетке (репликации, транскрипции и, прежде всего, трансляции). Метаболические ферменты и белки транспортной системы представлены куда более разреженно, что вполне ожидаемо для организма, растущего в самой богатой из возможных сред. Этим минимальный набор генов резко отличается от полного набора КОГ, но напоминает набор незаменимых бактериальных генов (нокаут которых убивает бактерию, см. рис. 3-11). Эта особая эволюционная устойчивость систем передачи клеточной информации является одним из центральных обобщений сравнительной геномики. Мы вернемся к этому вопросу позднее.