94 I. 120 v.
О движении. Говорит Альберт Саксонский в своем сочинении «О пропорциях», что если сила движет движимое с определенной скоростью, то половину его будет двигать с двойной скоростью, что, мне кажется, не так.
95 I. 102 v.
И если некоторые говорили, что чем меньше приводимое в движение тело, тем более его гонит движущее, постоянно увеличивая скорость движения пропорционально уменьшению его до бесконечности, то отсюда следовало бы, что атом был бы почти столь же быстр, сколь воображение или глаз, который мгновенно достигает звездной высоты. Поэтому путь его был бы бесконечен, так как вещь, которая может уменьшаться бесконечно, делалась бы бесконечно быстрой и двигалась бы по бесконечному пути, поскольку всякая непрерывная величина делима до бесконечности. Мнение это отвергается разумом, а следовательно, и опытом.
96 Е. 60 r.
То, что в акте делимо, делимо и в потенции; хотя это и не значит, что делимое в потенции делимо и в акте. И если деления, совершаемые потенциально в бесконечность, меняют субстанцию делимой материи, то деления эти вернутся к составу своего целого при воссоединении частей по тем же стадиям, по которым они делились. Возьмем, например, лед и будем делить в бесконечность: он превратится в воду, из воды в воздух, и если воздух опять уплотнится, то станет водой и из воды градом и т. д.
97 С. А. 119 v. b.
Хотя то, что делимо актуально, делимо и потенциально, однако не все величины, делимые потенциально, будут делимы актуально.
98 М. 87 v.
Если угол есть встреча двух линий, то, поскольку линии кончаются в точке, бесконечные линии могут иметь начало в такой точке и, наоборот, бесконечные линии могут вместе в этой точке кончаться; следовательно, точка может быть общей началу и концу бесчисленных линий.
И кажется здесь странным, что раз треугольник кончается точкой в вершине угла, противолежащей основанию, и можно его разделить с концов основания на бесконечное число частей, что точка, будучи общим пределом всех названных делений, вместе с треугольником окажется делимой до бесконечности.
99 Вr. М. 131 r.
Наименьшая физическая точка больше всех математических точек, и следует это из того, что физическая точка есть величина непрерывная, а все непрерывное делимо до бесконечности, а точка математическая неделима, потому что не есть величина.