54 F. 59 r.
Удвой квадрат, образуемый диагональным сечением данного куба, и у тебя будет диагональное сечение куба вдвое большего, чем данный: удвой одну из двух квадратных площадей, образуемых при диагональном сечении куба.
Другое доказательство, данное Платоном делосцам, геометрическое не потому, что ведется при помощи инструментов – циркуля и линейки и опыт нам его не дает, но оно всецело мысленное и, следовательно, геометрическое.
55 Е. 25 r.
Квадратура сектора lv. Придай треугольник аbс к сегменту bcd и раздели его на секторы, как показано на 2-й фигуре ghik; затем разъедини углы секторов друг от друга так, чтобы расстояние меж этими углами было равно выпрямленным основаниям этих секторов. Затем придай секторам 3-й фигуры rstv столько же секторов, то есть равновеликую им площадь, и ты образуешь четырехугольник nmop. Когда четырехугольник 4-й фигуры будет образован, отними половину, и ты отнимешь приданные секторы; и останется величина, равная 2-й фигуре ghik, которая будет квадратной. Далее ты отнимешь от этого квадрата столько, сколько занимает площадь треугольника первой фигуры аbс, и у тебя останется квадрированный сегмент круга, то есть bcd, криволинейная сторона которого выпрямилась при движении на прямую edf. Вот единственное и верное правило дать квадратуру части круга, меньшей его половины.
56 Е. 25 v.
Движение повозок всегда показывает, как спрямлять окружности круга.
Полный оборот колеса, толщина которого будет равна полудиаметру, оставляет по себе след, равный квадратуре его круга.
Вещь, которая движется, забирает столько пространства, сколько теряет. Отсюда следует, что при опускании вниз обеих сторон сектора аb и ас до еf и eg кривая bdc выпрямилась бы и разогнулась бы до fg и площадь efg сделалась бы равной площади аbс. В abcd потерянное пространство