Поля организуют и структурируют данные области. Они могут быть физическими, как в случае футбольного поля или поля пшеницы, или воображаемыми, как в случае поля деятельности. На пшеничном поле можно выращивать пшеницу, но не играть в футбол. В данной области деятельности вы можете выполнять определенные работы и становиться экспертом в этой области.

Типичный пример физического поля представляет собой магнитное поле. Оно описывает, как магнитные силы распространяются в пространстве вокруг магнита. Вблизи магнита поле самое сильное, здесь оно имеет больше всего силовых линий. На большом расстоянии от магнита поле самое слабое, оно имеет меньше силовых линий.


Рис. 6.1. Электромагнитное поле вокруг магнита* В русском языке такое словоупотребление встречается редко, например, в выражении «поле деятельности». Поэтому использованный в следующем предложении английский оборот I am in the field ofpsychology переводится на русский язык как «Я занимаюсь психологией» или «Я работаю в области психологии». (Примеч. пер.)


Магнетизм – это невидимая сила, которая влияет на мелкие частички железа, заставляя их располагаться вдоль силовых линий. Как и магнитные поля, поле тяготения Земли невидимо, однако все мы чувствуем, как оно тянет нас вниз, когда пытаемся подпрыгивать в воздух. Тяготение заставляет людей реагировать на Землю, так как железные опилки должны реагировать на магнит.

Идеи поля не новы. С древних времен считалось, что Дао структурирует повседневную жизнь. Древние китайцы представляли себе Дао как поле, имеющее силовые линии, которые назывались «линиями дракона». Люди верили, что это духовное, психофизическое поле оказывает воздействие не только на здоровье и состояние ума человека, но и на геологию и географию Земли. Линии дракона выглядели очень похоже на изображенные выше магнитные линии.

Поля в математике

Математики тоже используют понятие поля>1. Поле чисел – это также разновидность игрового поля. Здесь действуют особые правила, простейшими из которых являются сложение и вычитание.

К примеру, рассмотрим поле ряда положительных действительных чисел, то есть 1, 2, 3, 4, 5, 6, 7, 8 и т.д. Когда мы прибавляем к любому числу, то все равно получаем число в ряду действительных чисел. Поэтому мы можем играть в игру сложения с действительными положительными числами, так как по-прежнему находимся на поле. Сложение и вычитание – это описания того, что мы можем делать с числовым полем. Эти правила описывают то, как числа можно соотносить друг с другом.

При сложении мы увеличиваем величину одного числа на величину другого числа; мы двигаемся дальше по ряду положительных чисел. При вычитании мы можем делать противоположную вещь, то есть уменьшать величину одного числа на величину другого числа, и двигаться по ряду числе в противоположном направлении.

Вы когда-нибудь задумывались об умножении? Это расширение процесса сложения. Например, вместо того чтобы складывать число 5 четыре раза, то есть вместо 5 + 5 + 5 + 5 = 20, умножение позволяет нам использовать сокращенный метод описания этого действия: 5 х 4 = 20. Умножение позволяет быстрее складывать одно и то же число с самим собой несколько раз.

Деление – это противоположность умножения. Деление разбивает число на части. Например, действие 20 : 4 = 5 разбивает число 20 на пять частей. Каждая часть имеет значение 4. Деление расщепляет что-либо на части, оно задает вопрос о равных частях числа.

Правила числового поля

Вспомните, что на данном поле могут происходить только те игры или процессы, которые соответствуют его правилам. Каковы правила числового поля? Вот они.