К счастью, он не единственно возможный – существуют и другие варианты. Почти идеальной для энергетического реактора является реакция на основе слияния ядер изотопов водорода – дейтерия и трития (D + Т), в результате чего образуется ядро гелия-4 и нейтрон. Энерговыделение этой реакции меньше, чем в водородном цикле, зато счет времени идет лишь на секунды, посему такой синтез вполне устраивает конструкторов термоядерных реакторов. Источником дейтерия послужит обычная вода (примерно в одной из каждых 3350 молекул воды один из атомов водорода замещен дейтерием), а тритий будут получать из облученного нейтронами лития – самого легкого из всех металлов, третьего элемента таблицы Менделеева.

Для преодоления кулоновского отталкивания дейтериево-тритиевую плазму необходимо нагреть как минимум до 100 миллионов градусов. Однако эта температура сама по себе не повлечет за собой самоподдерживающийся термоядерный процесс. В среднем на каждые сто тысяч столкновений ядер дейтерия с ядрами трития приходится лишь один акт образования гелия. Поэтому для запуска реактора плазму следует не только подогреть, но и сильно сжать, увеличив таким образом частоту столкновений и выход гелия. Кроме того, плазму необходимо сохранить в таком состоянии достаточно долго, чтобы успело сгореть заметное количество термоядерного топлива. Понятно, что с позиций инженерного проектирования получается весьма нетривиальная задача.

Именно запредельная техническая сложность термоядерного реактора долгое время сдерживала развитие данного направления энергетики. Ведь сложность – это еще и вопрос стоимости. К примеру, в 1976 году Консультативный комитет по термоядерной энергии Министерства энергетики США попытался оценить сроки осуществления научно-исследовательских и опытно-конструкторских работ (НИОКР) на этапе создания демонстрационной (всего лишь демонстрационной!) термоядерной энергетической установки при разных вариантах финансирования исследований. При этом обнаружилось, что объемы существовавшего на тот момент годичного финансирования исследований в области термоядерной энергетики совершенно недостаточны, и при сохранении подобного уровня ассигнований создание даже уникальной экспериментальной установки никогда не завершится успехом.

Помимо технической сложности и высокой стоимости, сдерживающим фактором выступает… размер. Дело в том, что термоядерную установку обсуждаемого типа нельзя создать и продемонстрировать в виде небольшой модели. Как было сказано выше, для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение же затрачиваемой и получаемой энергии возрастает пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на крупных станциях. Общество просто не было готово к финансированию столь крупных проектов, пока не существовало достаточной уверенности в успехе.

* * *

Эти проблемы могли быть обойдены только в одной стране мира – в Советском Союзе, в котором власти не жалели денег на перспективные разработки и мало прислушивались к «общественному мнению». И советские физики действительно вырвались вперед, научившись строить уникальные токамаки, которые сегодня являются предметом вожделения многих научных учреждений мира.

Однако с началом реформ и в СССР начали придавать значение финансовой отдаче, поэтому возникла идея кооперации усилий в рамках международного проекта. Впервые она обсуждалась на высоком уровне в начале октября 1985 года во время встречи Генерального секретаря ЦК КПСС Михаила Горбачева и французского президента Франсуа Миттерана. Идея получила дальнейшее развитие через полтора месяца, когда Горбачев провел в Женеве переговоры с президентом США Рональдом Рейганом. Вскоре определился первоначальный круг партнеров по разработке первой термоядерной электростанции: СССР, США, Евросоюз и Япония (со временем к ним присоединились КНР и Южная Корея). В 1999 году США вышли из числа участников этой программы, однако через четыре года сочли за благо в нее вернуться.