Постоянную работу против сил уравновешивания с окружающей средой Бауэр назвал «всеобщим законом биологии».

В свое время русский физик И.А.Умов писал, что мы имеем два закона термодинамики, управляющие процессами природы; мы не имеем закона или понятия, которые включали бы процессы жизни в процессы природы. Эволюция живой материи в общих чертах увеличивает количество и повышает качество упорядоченности в природе. Существующие в природе приспособления отбора, восстановления структуры и включающие в себя живое, должны, по—видимому, составить содержание третьего негэнтропийного закона термодинамики (3).

ГЛАВА 2

ОНТОГЕНЕЗ ЦЕНТРАЛЬНОЙ

НЕРВНОЙ СИСТЕМЫ


1

Головной мозг представляет собой одну из самых больших эволюционных загадок. Время, потребовавшееся для его эволюции, было очень мало (100 млн. лет) по сравнению с длительностью эволюции жизни в целом (4 млрд. лет) (148).

Онтогенетическая схема развития головного мозга и центральной нервной системы хорошо известна: оплодотворенная яйцеклетка – морула – бластодермический пузырек – эктодерма – нервная трубка – головной мозг.

Первым шагом в формировании центральной нервной системы из премордиальной массы клеток является ее превращение из поверхностной пластинки в трубку. Уже у четырехнедельного эмбриона человека можно выделить три области головного мозга: передний, средний и задний. Через пять недель передний мозг делится на конечный мозг и промежуточный. Эта стадия развития уже хорошо видна у эмбрионов 9—12 мм длины. В дальнейшем промежуточный мозг дифференцируется на надталамическую область (эпиталамус), зрительный бугор и подталамическую область (гипоталамус). Конечный мозг, особенно его латеральные доли, чрезвычайно быстро растут, образуя полушария мозга. Поверхностный богатый клеточным серым веществом слой конечного мозга называется корой мозга. В процессе развития коры ее поверхность так сильно увеличивается, что собирается в складки – извилины.

Генетическая детерминация созревания нескольких миллиардов клеток коры мозга, их синаптических контактов на поверхностной мембране нейрона и самих нейронов, объединенных этими возбуждениями, создает ту наследственную матрицу морфофункциональной системы, которая определяет высшие формы сигнальной, системной деятельности.

В отличие от остальных тканей объем считываемой генетической информации продолжает нарастать не только в процессе эмбриогенеза, но и в постнатальном периоде и, вероятно, при обучении. В этом принципиальное отличие нервной ткани от других. В обычных соматических клетках взрослого организма геном репрессирован и активна только его небольшая часть (1—3%), только в мозге транскрибируется от 15 до 35% генома (18).

Не менее поразителен еще один факт: нервные структуры являются первым «органом» эмбриона, возникающим после завершения дробления оплодотворенного яйца и образования гаструлы (18). Около одной трети поверхности яйца занято областями, из которых формируются мозговые структуры. При этом нервные структуры выступают как фундаментальный фактор развития, с активным регулирующим влиянием на ряд морфогенетических процессов. Без нервных структур невозможна интеграция зародыша высокоорганизованного многоклеточного организма как целого.

Загадка мозга – в его стремительной эволюции, начиная от первых млекопитающих и до человека. Известно, что уже мозг рептилий вполне обеспечивал адаптацию к внешнему миру. Какой резкий толчок и с какой целью направил эволюцию мозга в сторону быстрого увеличения его объема? Правда, с тем же успехом можно размышлять и о том, какой толчок направил эволюцию крыльев у бабочки.