. Более того, если бы панспермия случалась более одного раза, то в генетической сигнатуре жизни на Земле присутствовали бы множественные генетические предки. Вместо этого данные секвенирования ДНК показывают, что вся жизнь на Земле имеет общего генетического предка, то есть мы все следуем одной и той же генетической инструкции. И, наконец, разочаровывает, что теория панспермии просто отодвигает в сторону цель в вопросе о том, как возникли самовоспроизводящиеся сложные молекулы. Доказательства гипотезы о внеземном происхождении жизни в значительной мере теоретические, не имеющие эмпирической или экспериментальной поддержки.

И напротив, вторая гипотеза о зарождении жизни на Земле благодаря химической самоорганизации получает все более сильную экспериментальную поддержку. В 1950-х гг. Стэнли Миллер, еще будучи аспирантом, стремился воспроизвести условия ранней Земли в лаборатории (Рисунок 1.1). Работая под началом своего научного руководителя, лауреата Нобелевской премии Гарольда Юри, Миллер собрал стеклянную установку, содержавшую воду, аммиак, метан и водород – смесь, считавшуюся в то время приближенной к ранней земной атмосфере. Жидкость нагревалась пламенем для имитации условий вулканически активной планеты, а электрические разряды моделировали молнии. Через несколько дней вода стала темно-красной: Миллер создал бульон, названный «первичным бульоном», из аминокислот, необходимых для зарождения жизни. За последние два десятилетия проводились разные другие эксперименты, моделирующие ранние земные условия, особенно подобные тем, что существуют в окружении глубоководных гидротермальных источников.


Рисунок 1.1. Стэнли Миллер, отец химической гипотезы происхождения жизни. Простые эксперименты Миллера показали, что ключевые органические соединения могут быть синтезированы из неорганических веществ путем простой химической самоорганизации.(Документы Стэнли Миллера, Специальные коллекции архивы Университета Калифорнии в Сан-Диего).


По мере остывания Земли ее облик стал намного больше походить на сегодняшний, с твердой корой и мантией вокруг горячего, жидкого, термоядерного ядра. Сходное по температуре с Солнцем, это ядро остается горячим вследствие радиоактивного распада, подобно массивному термоядерному реактору. Взаимодействия между этим ядром и более холодной поверхностью коры и водой приводят в движение континентальные плиты. Когда они сталкиваются, могут образовываться горные хребты, а когда расходятся, компоненты мантии и ядра могут попадать на поверхность Земли. Эти воздействия и перемещения мантийного материала на поверхность могут приводить к появлению наземных образований, подобных Гавайским островам, или гидротермальных источников, наподобие используемых для получения энергии в Исландии, где сталкиваются Европейская и Североамериканская литосферные плиты.

Гидротермальные источники привлекают внимание ученых с момента их открытия в 1949 г., и им обязаны некоторые из наиболее важных научных открытий прошлого века. Если все другие экосистемы на Земле питаются солнечной энергией, экосистемы, развившиеся в гидротермальных источниках и вокруг них, питаются тепловой и химической энергией, выделяющейся в ходе ядерных реакций в ядре Земли – являющихся, в свою очередь, остатками породившего Вселенную Большого взрыва. В гидротермальных источниках при высоких давлениях и температурах могут образовываться более сложные органические соединения, такие, как сахара и аминокислоты[12]. Существующие в настоящее время сообщества уникальных организмов, зависимых от гидротермальных источников и обитающих вблизи них, базируются на хемосинтезирующих, а не на фотосинтезирующих бактериях. Бактерии в экосистемах гидротермальных источников превращают газообразные водород, диоксид углерода или метан в органическое вещество, используя их же в качестве источника энергии. Такие «аноксигенные» или бескислородные условия поразительно похожи на условия ранней Земли. Так что как гидротермальные источники, так и эксперименты, подобные миллеровской склянке, могут временами выступать в роли «телескопов времени» для изучения происхождения жизни.