Обычно для решения определённой задачи создаётся так называемая «индивидуальная машина», которая, в отличие от универсальной машины Тьюринга, направлена на решение конкретной задачи, причём обычно делает это более эффективным способом, поскольку индивидуальная машина специально сконструирована для решения именно этой задачи. Машина Тьюринга, лежащая в основе стандартной вычислительной модели, выполняет свои команды последовательно, а в рамках квазибиологической парадигмы часто рассматривается массовый параллелизм. Ну вот если, к примеру, рассмотреть ДНК-компьютер, то в нём все молекулы ДНК одновременно участвуют во взаимодействиях, параллельно проводя вычисления.

Два самых главных направления в рамках квазибиологического подхода – это молекулярные вычисления и биомолекулярная электроника. Можно ещё упомянуть нейрокомпьютинг и создание нейроморфных чипов, но они чаще всего рассматриваются как часть структурного подхода и искусственных нейронных сетей.

Молекулярные вычисления – это отдельная вычислительная модель, в которой решение задачи осуществляется при помощи проведения сложных биохимических или нанотехнологических реакций. Молекулярные компьютеры – это молекулы, запрограммированные на нужные свойства и поведение, которые, участвуя в химических реакциях, как бы «выращивают» результат. Что интересно, идею биокомпьютинга подсказал выдающийся математик Джон фон Нейман в своей книге «Теория самовоспроизводящихся автоматов», которую, кстати, очень рекомендую для внимательного чтения. В этой книге описан проект клеточных автоматов, которые могут самовоспроизводиться, как живая клетка.

Почти в каждой живой клетке нашего организма есть длинная молекула ДНК, кодирующая генетическую информацию. При помощи различных ферментов цепочки ДНК могут быть разрезаны, склеены, в них могут добавляться буквы генетического кода или удаляться из них. Всё это – базовые операции работы с информацией, которые могут быть использованы для производства вычислений. Более того, цепочки ДНК могут воспроизводиться и клонироваться. Это позволяет запустить массовый параллелизм поиска решения. В небольшой пробирке после проведения должным образом сконструированной биохимической реакции будет получен результат, который считывается специальной аппаратурой.

Интерес вызывает то, что для некоторых задач молекулярные компьютеры очень быстро и точно находят приемлемые решения, в то время как традиционные компьютеры затрудняются это сделать. Например, решение задачи коммивояжёра, т. е. поиска кратчайшего пути обхода графа, при помощи реакций с ДНК осуществляется практически мгновенно, в то время как для обычного компьютера требуется огромное количество времени. Правда, тут есть одна тонкость, которая мешает работе обычному компьютеру, – это комбинаторный взрыв. И если в традиционной архитектуре он ведёт к увеличению времени решения, то для ДНК-компьютера требуется подготовка огромного количества вариантов нуклеотидных нитей. Соответственно, объём пробирки растёт так же, как и количество вариантов в комбинаторном взрыве.

В общем, часто биокомпьютинг можно охарактеризовать как новую парадигму вычислений, которая, в отличие от традиционной вычислительной модели, работает быстро, но при решении сложных задач с комбинаторным взрывом растёт не время вычислений, а необходимый для них объём биокомпьютера.

Вместе с тем в последнее время всё активнее разрабатывается агентный подход к построению искусственного интеллекта. В рамках этого подхода изменена точка зрения на цель построения интеллектуальной системы и считается, что построить нужно систему не с разумным поведением, а с рациональным. С одной стороны, это серьёзно облегчает задачу, поскольку, в отличие от понятий «разум» или «интеллект», понятия «рациональность» и «рациональное поведение» можно строго формализовать (например, рациональное поведение – это выбор и достижение оптимальной цели с минимизацией затраченных на это ресурсов). С другой стороны, для демонстрации рационального поведения агент должен обладать достаточной «разумностью», чтобы определить цель, составить стратегию её достижения и выполнить её.