В 1950-х годах Джон фон Нейман, отчасти вдохновляясь беседами с Винером, ввел понятие «технологической сингулярности». Технологии имеют тенденцию улучшаться в геометрической прогрессии, скажем удваивать мощность или чувствительность приборов за некоторый интервал времени. (Например, с 1950 года компьютеры удваивали мощность примерно каждые два года – это наблюдение известно как закон Мура.) Фон Нейман экстраполировал наблюдаемый экспоненциальный технический прогресс и допустил, что «технический прогресс станет непостижимо быстрым и сложным», опережая человеческие возможности в уже не слишком отдаленном будущем. Действительно, если отталкиваться исключительно от наращивания вычислительных мощностей, выраженных в битах и битовых переходах, и прогнозировать будущее на основании текущих темпов, мы вправе утверждать, что компьютеры сравняются по возможностям с человеческим мозгом в ближайшие два-три-четыре десятилетия (в зависимости от того, как оценивать сложность процессов обработки информации в человеческом мозге).
Провал первоначальных, чрезмерно оптимистичных прогнозов относительно создания полноценного ИИ на несколько десятилетий заглушил разговоры о технологической сингулярности, но после публикации работы Рэя Курцвейла «Сингулярность рядом» (2005) идея технического развития, ведущего к появлению суперинтеллекта, снова обрела силу. Кое-кто, включая самого Курцвейла, стал рассматривать эту сингулярность как возможность прорыва: мол, люди смогут объединить свои сознания со сверхразумом и тем самым обрести вечную жизнь. Стивен Хокинг и Илон Маск высказали опасения, что этот суперинтеллект окажется злонамеренным, и расценивали его как величайшую из нынешних угроз существованию человеческой цивилизации. Третьи, в том числе некоторые из авторов настоящей книги, полагают, что подобные опасения преувеличенны.
Труды Винера и то обстоятельство, что он не сумел предугадать последствия развития кибернетики, неразрывно связаны с представлением о приближении технологической сингулярности. Его деятельность в сфере нейробиологии и первоначальная поддержка, которую он оказывал Маккаллоку и Питтсу, позволили разработать современные, поразительно эффективные методы глубинного обучения. За последнее десятилетие, особенно в последние пять лет, такие методы глубинного обучения наконец-то привели к возникновению, если воспользоваться одним из терминов Винера, гештальта: машина, например, способна распознавать в круге круг, даже если он наклонен и выглядит как эллипс. Винеровские концепции управления вкупе с изучением нейромышечной обратной связи имели большое значение для развития робототехники и послужили основой для разработки нейронных интерфейсов «человек/машина». Однако однобокость его технологических прогнозов побуждает воспринимать идею технологической сингулярности с немалой осторожностью. Общие затруднения технологического прогнозирования как такового и проблемы, свойственные разработке суперинтеллекта, удерживают меня от избыточного энтузиазма в отношении как вычислительной мощности, так и эффективности обработки информации.
Никакое экспоненциальное развитие не длится бесконечно. Атомный взрыв распространяется по экспоненте, но только пока не кончится его «топливо». Точно так же экспоненциальный прогресс по закону Мура начинает сталкиваться с пределами, налагаемыми физикой. Тактовая частота компьютеров достигла максимума в несколько гигагерц полтора десятилетия назад, далее чипы начали плавиться от нагрева. Миниатюризация транзисторов столкнулась с квантово-механическими проблемами вследствие туннелирования