ИИ – не новость и не сказка. Первые разработки в этой сфере начались еще в 1950-х. ИИ – это способность компьютерных систем или машин вести себя подобно разумным существам, учиться и самостоятельно действовать. ИИ берет данные, применяет к ним вычислительные правила (алгоритмы) и на основании расчетов принимает решение или прогнозирует результат.
Данными могут быть изображения с рукописным текстом, буквы и цифры. Алгоритм – это написанная человеком компьютерная программа с некими правилами: например, каким должен быть шрифт или интервал между словами. Программа анализирует отсканированный текст, применяет правила и прогнозирует, какие буквы, цифры и слова в нем содержатся. Так машина распознает рукописный текст. Подобный ИИ еще с 1997 года использовала почта США, чтобы автоматически считывать адреса на конвертах. Для узкой задачи этот ИИ вполне годился.
ИИ на основе правил не справляется с более сложными задачами. Не подходит он и в случаях, когда правила трудно сформулировать, а значит невозможно внести в программу. Мы говорим на родном языке, ходим, узнаем лица друзей в толпе незнакомцев – и всему этому учимся по опыту, а не по правилам.
Нейронные сети мозга тренируются распознавать лица, когда мы наблюдаем их в разных ракурсах некоторое время. Движение и речь развиваются в ходе проб и ошибок. В современном ИИ за обучение отвечают искусственные нейронные сети. Мы не программируем правила – машины создают их сами. Происходит это в процессе, аналогичном нашему познанию на опыте. Это и называется «машинное обучение».
В машинном обучении ИИ обрабатывает данные тысяч изображений, с человеческим лицом или без него. Он создает свой алгоритм либо полностью самостоятельно (машинное обучение без учителя), либо с помощью человека (машинное обучение с учителем).
Если обучающие данные обрабатываются несколькими слоями искусственных нейронных сетей, – это глубокое обучение. Именно благодаря ему произошел рывок в развитии ИИ, в том числе компьютер смог распознавать, что или кого он видит на изображении или видео (машинное зрение). А еще ИИ стал лучше понимать рукописный текст и устную речь, писать и говорить. Эта технология называется обработкой естественного языка – ее мы наблюдаем на примере чат-ботов и умных колонок Amazon Echo.
Машинное обучение успешно по двум причинам.
1. Наличие данных. Данные – это сырье для ИИ, а в нынешнем мире больших данных их производится больше, чем когда-либо. Происходит цифровизация: любая деятельность оставляет цифровой след. Вокруг нас все больше устройств, которые собирают и передают данные. Данных для обучения ИИ тоже становится больше, а их многообразие растет крайне быстро.
2. Вычислительная мощность. Прорыв в облачных вычислениях позволяет хранить практически неограниченные объемы данных – и при этом дешево. А с помощью распределенных вычислений они анализируются почти в реальном времени. Микроэлектронные технологии прогрессируют, поэтому сложные вычисления возможны на маленьких мобильных устройствах, например на смартфонах. Мы называем это граничными (или периферийными) вычислениями на устройствах интернета вещей.
Люди непрерывно учатся и совершенствуются на своем опыте. Это обучение действием. В алгоритмах машинного обучения ему соответствует обучение с подкреплением. Ребенок учится ходить, все время делая поправку на опыт: если он упал из-за того, что широко шагнул, – значит, надо сделать шаг поменьше.