Таким образом, проведение визуализации и анализа данных является важным шагом перед построением моделей машинного обучения, поскольку позволяет понять особенности данных, выявить потенциальные проблемы и определить подходящие методы предварительной обработки данных.

Рассмотрим примеры кода для визуализации данных с использованием библиотеки `matplotlib` в Python:

1. Пример гистограммы:

```python

import matplotlib.pyplot as plt

# Данные для визуализации

data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]

# Построение гистограммы

plt.hist(data, bins=5, color='skyblue', edgecolor='black')

# Добавление названий осей и заголовка

plt.xlabel('Значение')

plt.ylabel('Частота')

plt.title('Пример гистограммы')

# Отображение графика

plt.show()

```




Этот код использует библиотеку `matplotlib.pyplot` для построения гистограммы. Для визуализации используются данные `data`, которые содержат значения признака. Гистограмма строится с помощью функции `hist()`, где параметр `bins` определяет количество столбцов в гистограмме. В данном случае используется 5 столбцов. Цвет гистограммы задается параметром `color`, а цвет краев столбцов – `edgecolor`.

Затем добавляются названия осей и заголовок с помощью функций `xlabel()`, `ylabel()` и `title()`. Наконец, график отображается с помощью функции `show()`.

На получившейся гистограмме мы можем увидеть распределение значений признака от 1 до 5 и их частоту в наборе данных.

2. Пример ящика с усами:

```python

import matplotlib.pyplot as plt

# Данные для визуализации

data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]

# Построение ящика с усами

plt.boxplot(data)

# Добавление названий осей и заголовка

plt.xlabel('Данные')

plt.ylabel('Значение')

plt.title('Пример ящика с усами')

# Отображение графика

plt.show()

```




На результате данного кода мы видим ящик с усами, который позволяет нам оценить основные статистические характеристики распределения данных.

Этот код использует библиотеку `matplotlib.pyplot` для построения ящика с усами. Данные `data` содержат значения признака, которые мы хотим визуализировать. Функция `boxplot()` используется для построения ящика с усами на основе этих данных.

Затем добавляются названия осей и заголовок с помощью функций `xlabel()`, `ylabel()` и `title()`. Наконец, график отображается с помощью функции `show()`.

На получившемся графике мы видим ящик, который представляет межквартильный размах (от первого квартиля до третьего квартиля) и медиану (линия внутри ящика). Усы расширяются до самого нижнего и самого верхнего значения данных, а выбросы отображаются в виде точек за пределами усов.

3. Пример диаграммы рассеяния:

```python

import matplotlib.pyplot as plt

# Данные для визуализации

x = [1, 2, 3, 4, 5]

y = [2, 3, 5, 7, 11]

# Построение диаграммы рассеяния

plt.scatter(x, y, color='green')

# Добавление названий осей и заголовка

plt.xlabel('X')

plt.ylabel('Y')

plt.title('Пример диаграммы рассеяния')

# Отображение графика

plt.show()

```


На результате данного кода мы видим диаграмму рассеяния, которая помогает визуализировать взаимосвязь между двумя переменными.

Этот код использует библиотеку `matplotlib.pyplot` для построения диаграммы рассеяния. Данные для визуализации представлены в виде двух списков `x` и `y`, которые содержат значения соответствующих переменных.

Функция `scatter()` используется для построения диаграммы рассеяния на основе этих данных. Мы можем указать цвет точек с помощью параметра `color`.

Затем добавляются названия осей и заголовок с помощью функций `xlabel()`, `ylabel()` и `title()`. Наконец, график отображается с помощью функции `show()`.