Для смягчения проблемы переобучения и улучшения обобщающей способности деревьев решений используются ансамблированные методы, такие как случайный лес и градиентный бустинг. Случайный лес объединяет несколько деревьев решений и усредняет их предсказания, что позволяет получить более стабильные результаты. С другой стороны, градиентный бустинг обучает последовательность деревьев, каждое из которых исправляет ошибки предыдущего, что приводит к улучшению качества модели. Эти методы имеют большую обобщающую способность и стабильность по сравнению с отдельными деревьями решений, но их сложнее интерпретировать из-за их составной структуры и взаимосвязей между отдельными моделями.


Пример 1

Задача:

Представим, что у нас есть набор данных, содержащий информацию о клиентах банка, включая их возраст, доход, семейное положение и другие характеристики. Наша задача состоит в том, чтобы на основе этих данных предсказать, совершит ли клиент депозит в банке или нет.

Ход решения:

1. Загрузка данных: Сначала мы загрузим данные о клиентах банка, чтобы начать анализ.

2. Предварительный анализ данных: Проведем предварительный анализ данных, чтобы понять структуру набора данных, распределение признаков и наличие пропущенных значений.

3. Подготовка данных: Выполним предварительную обработку данных, такую как кодирование категориальных признаков, заполнение пропущенных значений и масштабирование признаков.

4. Разделение данных: Разделим данные на обучающий и тестовый наборы. Обучающий набор будет использоваться для обучения модели, а тестовый – для ее оценки.

5. Обучение модели: Обучим модель на обучающем наборе данных, используя метод SVM.

6. Оценка модели: Оценим качество модели на тестовом наборе данных, используя метрики, такие как точность, полнота и F1-мера.

Пример кода:

```python

# Импорт библиотек

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report

from sklearn.datasets import load_bank_dataset

# Загрузка данных о клиентах банка

data = load_bank_dataset()

X = data.drop(columns=['deposit'])

y = data['deposit']

# Предварительный анализ данных

print(X.head())

print(X.info())

# Подготовка данных

X = pd.get_dummies(X)

X.fillna(X.mean(), inplace=True)

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

# Разделение данных на обучающий и тестовый наборы

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# Обучение модели SVM

svm_classifier = SVC(kernel='rbf', random_state=42)

svm_classifier.fit(X_train, y_train)

# Оценка модели

y_pred = svm_classifier.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

print(classification_report(y_test, y_pred))

```

Это пример кода, который загружает данные о клиентах банка, обрабатывает их, разделяет на обучающий и тестовый наборы, обучает модель SVM и оценивает ее производительность на тестовом наборе данных.


2. Задачи регрессии

Задачи регрессии направлены на прогнозирование непрерывных значений целевой переменной на основе входных данных. Некоторые популярные методы решения задач регрессии включают в себя:

– Линейная регрессия

– Регрессия на основе деревьев (например, случайный лес)

– Градиентный бустинг

Рассмотрим их подробнее.

Линейная регрессия

Линейная регрессия – это классический метод в машинном обучении, который применяется для анализа и предсказания взаимосвязи между одной или несколькими независимыми переменными и зависимой переменной. Одним из ключевых предположений линейной регрессии является линейная зависимость между признаками и целевой переменной. Цель состоит в том, чтобы найти оптимальные параметры модели (коэффициенты), которые минимизируют сумму квадратов разностей между фактическими значениями зависимой переменной и предсказанными значениями, полученными с использованием линейной функции.