Применение снижения размерности данных и метода PCA находит широкое применение в различных областях, таких как обработка сигналов, анализ изображений, биоинформатика и финансовая аналитика. Этот метод является мощным инструментом в работе с данными, позволяя эффективно извлекать информацию из больших объемов данных и улучшать качество анализа.

Применение обучения без учителя позволяет извлечь ценные знания и понимание из данных, даже если мы не знаем правильных ответов заранее. Этот тип обучения находит широкое применение в различных областях, таких как анализ данных, исследования рынка, биоинформатика и многое другое.


Пример 1

Давайте рассмотрим пример задачи снижения размерности данных с использованием метода главных компонент (PCA) на наборе данных Breast Cancer Wisconsin (данные о раке груди).

```python

# Импортируем необходимые библиотеки

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

# Загрузим набор данных Breast Cancer Wisconsin

breast_cancer = load_breast_cancer()

X = breast_cancer.data

y = breast_cancer.target

target_names = breast_cancer.target_names

# Стандартизируем признаки

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

# Применим метод главных компонент (PCA) для снижения размерности до 2 компонент

pca = PCA(n_components=2)

X_pca = pca.fit_transform(X_scaled)

# Визуализируем результаты

plt.figure(figsize=(8, 6))

colors = ['navy', 'turquoise']

lw = 2

for color, i, target_name in zip(colors, [0, 1], target_names):

plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1], color=color, alpha=.8, lw=lw,

label=target_name)

plt.legend(loc='best', shadow=False, scatterpoints=1)

plt.title('PCA of Breast Cancer Wisconsin dataset')

plt.xlabel('Principal Component 1')

plt.ylabel('Principal Component 2')

plt.show()

```


Этот код загружает набор данных Breast Cancer Wisconsin, стандартизирует признаки, применяет метод главных компонент (PCA) для снижения размерности до 2 компонент и визуализирует результаты. В результате получаем двумерное представление данных о раке груди, которое помогает нам лучше понять структуру и взаимосвязи между признаками.

Метод снижения размерности данных, такой как метод главных компонент (PCA), применяется здесь для уменьшения количества признаков (в данном случае, измерений) в наборе данных до двух главных компонент. Это делается с целью упрощения анализа данных и визуализации, при этом сохраняя как можно больше информации о вариативности данных.

В коде мы выполняем следующие шаги:

1. Загрузка данных: Мы загружаем набор данных о раке груди и разделяем его на признаки (X) и метки классов (y).

2. Стандартизация признаков: Перед применением PCA признаки стандартизируются, чтобы среднее значение каждого признака было равно 0, а стандартное отклонение равнялось 1. Это необходимо для обеспечения одинаковой значимости всех признаков.

3. Применение PCA: Мы создаем экземпляр PCA с параметром `n_components=2`, чтобы снизить размерность данных до двух главных компонент.

4. Преобразование данных: С помощью метода `fit_transform()` мы преобразуем стандартизированные признаки (X_scaled) в новое двумерное пространство главных компонент (X_pca).

5. Визуализация результатов: Мы визуализируем полученные двумерные данные, используя метки классов для раскрашивания точек на графике. Это позволяет нам увидеть, как объекты данных распределяются в новом пространстве главных компонент и какие зависимости между ними могут быть обнаружены.