● прогнозирование покупательских предпочтений;
● выявление мошенничества с кредитами и страховыми выплатами в режиме реального времени;
● анализ гарантийных данных для выявления проблем с безопасностью или качеством автомобилей и другой производимой продукции;
● автоматизация таргетинга интернет-рекламы;
● более точное актуарное моделирование страховых случаев.
Когнитивное прогнозирование, основанное на машинном обучении, имеет три отличия от традиционной аналитики: более высокую емкость данных и детализацию, обучение модели на фрагменте массива данных и улучшение со временем ее способности к классификации и прогнозированию.
Благодаря машинному обучению (в частности, глубокому машинному обучению, которое имитирует работу человеческого мозга для выявления закономерностей) ИИ может выполнять такие действия, как распознавание речи и образов. Машинное обучение также помогает очищать данные для более точной аналитики. Деятельность по обработке данных всегда была довольно трудоемкой, но теперь машинное обучение позволяет выявлять совпадения в базах данных – информацию, с высокой вероятностью связанную с одним и тем же человеком или компанией, но продублированную в разных форматах.
General Electric использовала эту технологию для интеграции данных о поставщиках и сэкономила $80 млн в первый же год, ликвидировав излишки и перезаключив контракты, управляемые ранее подразделениями. Крупный банк использовал эту технологию для извлечения данных о сроках из договоров с поставщиками и сопоставления их с данными счетов-фактур, выявив десятки миллионов долларов, потраченных на недопоставленные товары и услуги. Аудиторская сеть Deloitte использовала когнитивное прогнозирование для извлечения условий из контрактов, что позволило в ходе аудита охватывать больше документов, иногда все 100 %, без необходимости их тщательного прочтения аудиторами.
Программы когнитивного прогнозирования обычно используются для повышения производительности в тех процессах, которые могут выполняться только машинами, – например, в покупке интернет-рекламы, требующей такого высокоскоростного анализа данных и автоматизации, что они уже давно превзошли человеческие возможности, – поэтому, как правило, не представляют угрозы рабочим местам.
Проекты, которые вовлекают сотрудников и клиентов в общение и способны обрабатывать естественный язык с помощью чат-ботов, интеллектуальных программ и машинного обучения, были наименее распространенным типом проектов в нашем исследовании (16 % от общего числа). Эта категория включает в себя:
● интеллектуальные программы, которые предлагают круглосуточное обслуживание клиентов, решая широкий и постоянно растущий круг вопросов – от восстановления пароля до оказания технической поддержки, – и все на естественном языке клиента;
● внутрикорпоративные сайты для ответов на вопросы сотрудников по таким темам, как техподдержка, льготы для персонала и кадровая политика;
● системы рекомендаций по продуктам и услугам для розничных продавцов, повышающие персонализацию, вовлеченность и продажи, – обычно они включают в себя богатый язык и изображения;
● системы рекомендаций по медицинскому обслуживанию, которые помогают создавать индивидуальные планы, учитывающие состояние здоровья отдельных пациентов и пройденные ими курсы лечения.
Компании в нашем исследовании чаще использовали технологии когнитивного взаимодействия с сотрудниками, чем с клиентами. Эта ситуация может поменяться, когда фирмам станет проще переключать общение с клиентами на машины. Например, Vanguard внедрил интеллектуальную программу, которая помогает персоналу службы поддержки клиентов отвечать на часто задаваемые вопросы. Идея состоит в том, чтобы позволить клиентам взаимодействовать с когнитивным агентом напрямую, без участия специалистов. SEBank в Швеции и медицинский технологический гигант Becton Dickinson в США используют Amelia – интеллектуальную программу-аватар, которая оказывает сотрудникам этих компаний техподдержку. Недавно SEBank сделал Amelia доступной и для клиентов, пока в тестовом формате, чтобы оценить ее производительность и реакцию клиентов.