Первый из них – это принцип относительности, согласно которому во всех инерциальных системах отсчета действуют одни и те же физические законы. Принцип относительности, прежде всего, устраняет различия в проявлениях законов механики и электродинамики при переходе в другие инерциальные системы. Он также исключает идею о неподвижном эфире абсолютного пространства. Часто этот принцип называют принципом относительности Пуанкаре – Эйнштейна, который, конечно, является расширением принципа относительности Галилея на все физические явления.

Второй принцип постулирует постоянство (неизменность) скорости света во всех инерциальных системах отсчета. Обычно в качестве постулата выбирается некая аксиома, то есть очевидное утверждение, не требующее доказательств. Второй же принцип выглядит скорее парадоксальным, чем очевидным. На первый взгляд он плохо сочетается с принципом относительности. Поэтому можно только восхищаться смелостью и гениальностью создателей СТО.

Остальные принципы иногда озвучиваются явно, иногда скрыты в процессе построений. Они частично перекрываются двумя, отмеченными выше. Как минимум, нужно упомянуть, что все построения (измерение расстояний и отсчет времени) ведутся с помощью световых (электромагнитных) сигналов.

Была построена теория, удовлетворяющая этим принципам. Оказалось, что преобразования Галилея нужно заменить преобразованиями Лоренца. Их использование приводит к преобразованиям не только пространственных координат, но и времени, все перемешивая. Таким образом, становится естественным рассматривать пространство и время не по отдельности, а как составляющие единой «арены», на которой рассматриваются физические взаимодействия, – пространственно-временного континуума, или просто пространства-времени.

Напомним, что уравнения электродинамики неизменны (инвариантны) относительно преобразований Лоренца (иначе: лоренц-инвариантны). Это и означает, что законы электромагнетизма одни и те же во всех инерциальных системах отсчета. Но как быть с законами механики, которые инвариантны относительно преобразований Галилея, но не Лоренца? А эти законы пришлось подправить для случая скоростей близких к скорости света, и их называют релятивистскими законами механики. При малых скоростях тел (значительно меньших световых) релятивистские законы переходят в законы механики Ньютона.

Эффекты СТО

Названия созвездий вы можете и забыть, но людей, которые не преклоняются перед чудесами природы, я считаю недостойными уважения.

Сэмуэль Майкельсон (отец Альберта Майкельсона)

Теперь обсудим наиболее важные и интересные эффекты специальной теории относительности. Многие из них оказались неожиданными для бытового восприятия. Но нет никаких противоречий, просто нам в повседневной жизни не доводится перемещаться с околосветовыми скоростями, а именно тогда эти эффекты становятся наблюдаемыми.

Относительное сокращение длины. Как отмечали Лоренц и Фицджеральд, движение любого объекта влияет на измеренную величину его длины. Представим космический корабль, который проносится мимо нас с большой скоростью. Для нас его размеры уменьшатся. Чем ближе скорость корабля к скорости света, тем более заметным становится этот эффект. При приближении его скорости к световой, сжатие будет стремиться к предельному – нулевым размерам в направлении движения. Что

же касается пилота космического корабля, то он не заметит никакого сокращения корабля, зато мы для него сожмемся. На рис. 5.1 проиллюстрировано релятивистское сокращение длины, где штрихованная система отсчета движется вдоль оси