Аллельные гены могут подавлять друг друга, то есть блокировать считывание информации с парного гена. Так, например, ген карих глаз подавляет ген голубых глаз. Если у отца глаза карие, а у матери и ее родителей – голубые, то у ребенка будут карие глаза. В свое время мы рассмотрим принципы наследования признаков более подробно. Пока что надо запомнить, что одни и те же гены могут существовать в различных формах (аллелях) и что аллельные гены могут друг друга подавлять. Кто кого подавляет, предопределено изначально, а не определяется конкретной ситуацией. Иначе говоря, ген карих глаз будет подавлять ген голубых глаз у всех людей.

Конкуренция в рамках пары генов приводит к тому, что одни признаки наследуются от отца, а другие от матери. Но при этом никогда в наследовании не будет половинчатости! Невозможно унаследовать один признак наполовину от матери и наполовину от отца, потому что гены не смешиваются друг с другом даже в парах, отвечающих за один и тот же признак. Гены никогда не смешиваются! Образно говоря, у ребенка голубоглазой матери и кареглазого отца будут голубые (в отдельных случаях такое возможно, и мы это в свое время обсудим) или карие глаза, но не темно-голубые или светло-карие.

«Сила» гена, его способность подавлять парный ген, называется экспрессивностью. Экспрессивность определяет степень выраженности гена в кодируемом им признаке. Чем ген экспрессивнее, тем сильнее он подавляет своего аллельного собрата.

Гены специфичны, каждый ген кодирует синтез одного конкретного белка, то есть отвечает за один определенный признак. Один ген – один белок – один признак… Однако настало время внести уточнение в это утверждение.

Предупреждение: читаем вдумчиво и ничему не удивляемся! Не бойтесь, что поначалу в голове образуется какая-то «каша», к концу этой главы вся «каша» разложится по тарелочкам!

Некоторые гены обладают множественным действием, то есть способностью влиять на несколько признаков. Такая «многогранность» называется плейотропией.

Плейотропия может быть первичной или вторичной.

При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек.

При вторичной плейотропии ген, по сути дела, влияет на один признак, от которого напрямую зависит несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. «Дефективный», то есть измененный ген, вызывает нарушение синтеза гемоглобина и на этом «умывает руки». Дальше действует «дефективный» гемоглобин, который приводит к таким вторичным проявлениям, как невосприимчивость к малярии, анемия,[10] увеличение печени и селезенки, поражение сердца и головного мозга.

Важно понимать, что правилу «один ген – один белок – один признак» плейотропия совершенно не противоречит. Белок-то в результате считывания информации с гена вырабатывается один, просто он может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок (или одна РНК)», и эта концепция будет верной для любого, без исключения. Вы с этим согласны? Наверное, согласны, ведь с помощью одной матрицы два разных вещества не наштампуешь…

А знаете ли вы, сколько разновидностей белков синтезируется в организме человека? Более ста тысяч! А генов у нас, как вы уже знаете, примерно впятеро меньше. Получается, что в среднем один ген должен обеспечивать синтез пяти белков. Но матрица-то одна! Код один!