• схема простых процентов;

• схема сложных процентов.

Схема простых процентов предполагает неизменность базы, с которой происходит начисление. Пусть исходный инвестируемый капитал равен P; требуемая доходность – r (в долях единицы). Считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину P · r. Таким образом, размер инвестированного капитала через n лет (Rn) будет равен:

Rn = P · (1 + n · r)

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные и невостребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т. е. база, с которой начисляются проценты, все время возрастает. Следовательно, размер инвестированного капитала будет равен:

Fn = P · (1 + r)>n

Эта формула может быть переписана следующим образом:

Fn = P · FM1(r,n),

где FM1(r,n) = (1+r)>n– мультиплицирующий множитель.

Экономический смысл множителя FM1(r,n) состоит в следующем: он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т. п.) через n периодов при заданной процентной ставке r.

Оценивая целесообразность финансовых вложений в тот или иной вид бизнеса, исходят из того, является это вложение более прибыльным (при допустимом уровне риска), чем вложения в государственные ценные бумаги, или нет. Используя несложные методы, пытаются проанализировать будущие доходы при минимальном, «безопасном» уровне доходности.

Основная идея этих методов заключается в оценке будущих поступлений Fn (например, в виде прибыли, процентов, дивидендов) с позиции текущего момента. Базовая расчетная формула для такого анализа является следствием формулы (4):


, где Fn– доход, планируемый к получению в n-м году;

P – текущая (или приведенная) стоимость, т. е. оценка величины Fn с позиции текущего момента;

r – коэффициент дисконтирования.

Экономический смысл такого представления заключается в следующем: прогнозируемая величина денежных поступлений через n лет (Fn) с позиции текущего момента будет больше и равна P (поскольку знаменатель дроби больше единицы). Это означает также, что для инвестора сумма P в данный момент времени и сумма Fn через n лет одинаковы по своей ценности. Используя эту формулу, можно приводить в сопоставимый вид оценку доходов от инвестиций, ожидаемых к поступлению в течение ряда лет. В этом случае коэффициент дисконтирования численно равен процентной ставке, устанавливаемой инвестором, т. е. тому относительному размеру дохода, который инвестор хочет или может получить на инвестируемый им капитал. Определяя коэффициент дисконтирования, обычно исходят из так называемого безопасного или гарантированного уровня доходности финансовых инвестиций, который обеспечивается государственным банком по вкладам или при операциях с ценными бумагами. При этом может даваться надбавка за риск, причем, чем более рисковым считается рассматриваемый проект или финансовый контракт, тем больше размер премии за риск. Иными словами, процентная ставка r>d, используемая в качестве коэффициента дисконтирования, будет в этом случае иметь следующий вид:

r>d = r>f + r>y

где r>f – безрисковая доходность;

Множитель FM2(r,k)=1/(1+r)>n называется дисконтирующим множителем. Экономический смысл дисконтирующего множителя FM2(r,k) заключается в следующем: он показывает «сегодняшнюю» цену одной денежной единицы будущего, т. е. чему с позиции текущего момента равна одна денежная единица (например, один рубль), циркулирующая в сфере бизнеса k периодов спустя от момента расчета, при заданных процентной ставке (доходности) r и частоте начисления процента. Одним из основных элементов финансового анализа вообще и оценки инвестиционных проектов в частности является оценка денежного потока C