В 1963 г. А. Ньюэлл и Г. Саймон, основываясь на анализе языка, предположили, что сущность разума заключается в способности оперировать символами. Такой подход позволил создать программу, способную решить любую интеллектуальную задачу в том случае, если задача могла быть формализована (например, доказывать теоремы, играть в шахматы и т. п.). Способность выполнять символьные вычисления вполне достаточна для решения интеллектуальных задач, а без таких вычислений разумное поведение невозможно. Таким образом, разум может быть рассмотрен как устройство, оперирующее информацией в соответствии с формальными правилами. В рамках данного подхода искусственный интеллект создаётся по аналогии с мозгом и нервной системой человека, т. е. по принципу нейросети. Нейросети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения – одно из главных преимуществ нейросетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение.

Этот подход подвергся критике со стороны философа Х. Дрейфуса. Суть его возражений в следующем:

• знание человека о мире состоит не только и не столько из объективных знаний о мире, сколько из нашего субьективного отношения к нему и склонности воспринимать и интерпретировать события так или иначе. Даже если мы используем символическую систему для выражения наших мыслей, мысли всё равно формируются во многом под воздействием бессознательных факторов. Следовательно, рассмотрение разума может как устройства, оперирующего информацией в соответствии с формальными правилами, недостаточно для понимания сущности разума и создания искусственного интеллекта;

• не всё знание и не все задачи могут быть формализованы. Значительная часть восприятия человека не может быть адекватно выражена в символах. Следовательно, искусственный интеллект, построенный как символическая система, сможет решать лишь небольшой круг формализуемых задач, не являясь разумом.

Практика создания искусственного интеллекта подтвердила правоту скептицизма Дрейфуса. Современные нейрокомпьютеры способны эффективно решать многие задачи, но до возможностей человеческого разума им бесконечно далеко. Таким образом, сведение разума к оперированию символами по формальным правилам не привело к пониманию его сущности.

Хотя качественного прорыва в создании сильного искусственного интеллекта не произошло, количественно вычислительные возможности ЭВМ возрастали экспоненциально, и в данный момент сложность современных ЭВМ неумолимо приближается к сложности мозга человека. Возможно ли, что количественный рост сложности вычислительных систем приведёт к их качественному скачку?

В 1993 г. математик и писатель В. Виндж предложил концепцию, описывающую последствия возникновения искусственного интеллекта, превосходящего по вычислительным возможностям человеческий разум. С того момента, как искусственный интеллект будет открывать новое знание быстрее человека, искусственный интеллект сможет создавать всё более и более совершенные вычислительные машины, которые будут ускорять рост знания в ещё большей степени, т. е. процесс будет нарастать как снежный ком, становясь недоступным пониманию человека. После этого развитие искусственного интеллекта станет настолько стремительным, что даже самые приблизительные прогнозы о том, что произойдёт дальше, теряют смысл. Виндж назвал этот момент «технологической сингулярностью».