Генная инженерия отличается от селекции, которой люди пользовались уже со времен сельскохозяйственной революции. Селекция ограничена набором уже имеющихся генов, присущих живому существу. Гентехника же позволяет создавать новые организмы, «смешивая» генетический материал различных живых существ, получая новые гены, не присущие ни одному организму, и создавая тем самым новые.
Гентехника быстро открывает новые возможности, не зная, что с ними делать, поэтому ее потенциал сегодня используется с большой осторожностью преимущественно на грибках, растениях, бактериях или насекомых, не имеющих рьяных защитников. Так случилось с известной бактерией Escherichia coli, живущей в кишечнике и иногда вызывающей смертельные инфекции. Ее изменили таким образом, что сейчас ее применяют в производстве биотоплива. Манипулируемые генные бактерии, coli и грибки используются при производстве инсулина, что снижает затраты в лечении диабета. Ген живущей в Арктике лисицы был внедрен в картофель для увеличения его морозоустойчивости.
Изредка генетически изменяют и млекопитающих. Каждый год молочная индустрия получает миллиардные потери вследствие мастита коров. Ученые экспериментировали с генно-модифицированными коровами, молоко которых содержит вещество лизостафин, поражающее возбудителя заболевания.
Была совершена попытка привить свиньям генетический материал червя, который в свою очередь подвергся генетической модификации с увеличением продолжительности жизни в 6 раз. С помощью этого червя генетики делают попытки заменить в организме свиней вредные для здоровья Омега‑6 жирные кислоты на полезные Омега‑3. И такая процедура будущим поколениям гентехников вскоре покажется детской игрой.
Выведена особая порода «Эйнштейн-мышей», обладающих гораздо лучшей памятью, чем их обычные сородичи. Ученые задумываются и о генетически программируемой моногамности. Полевые мыши – это маленькие сильные грызуны, выглядящие как домашние, но живущие в беспорядочных половых контактах. Наравне с ними существует вид моногамных полевых мышей, у которых ученые открыли ген, отвечающий за такое постоянство. Один-единственный такой ген превратил бы любвеобильного донжуана в верного мужа и благородного отца. Но мы еще далеки от возможности изменять и физические, и общественно полезные свойства организмов.
Однако генетики не ограничиваются модифицированием существующих видов по собственному желанию. Они мечтают возродить динозавров, как в фильме «Парк юрского периода», и воссоздать других давно исчезнувших с лица Земли живых существ. Русско-японско-корейская команда ученых недавно разгадала геном найденного в вечной мерзлоте Сибири мамонта, жившего 5 тыс. лет назад. Ученые планируют изъять оплодотворенную яйцеклетку современного слона и заменить в ней наследие слона молекулой ДНК мамонта, поместив ее затем в матку самки слона. После процесса вынашивания, длящегося 22 месяца, на свет снова должен появиться «первый» мамонт после вымирания. Но зачем нам нужен мамонт? Профессор Г. Хурч (G. McDonald Church) из Гарвардского университета заявляет, что после окончания проекта «Геном неандертальца» он хочет реконструировать ДНК неандертальца в яйцеклетке Homo sapiens и спустя 30 тыс. лет предъявить человечеству «первого» неандертальца. Для этого ученому требуется весьма ограниченный бюджет в 30 млн долларов, и уже появились женщины-добровольцы, желающие выносить и родить своего предка.
А зачем нам нужен неандерталец? Некоторые ученые считают, что, исследуя живого неандертальца, мы можем ответить на вопросы происхождения и идентичности