Целью Евклида было построить систему так, чтобы в ней не оставалось места для нечаянных допущений, основанных на интуиции, угадывании или приблизительности. Он ввел двадцать три определения[55], пять геометрических постулатов и пять дополнительных постулатов, которые он назвал «Общими утверждениями». На этом фундаменте он доказал 465 теорем – практически все геометрическое знание его времени.
Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, – писал он, – это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».
Окружность, по словам Евклида, есть «плоская фигура, обозначенная одной линией (кривой) так, что все прямые линии, пересекающие ее и еще одну из точек внутри ее, называемую центром, равны друг другу». О прямом угле сказано так: «Когда прямая линия пересекает другую прямую линию, а образующиеся соседние углы равны друг другу, любой из этих углов – прямой».
Некоторые другие Евклидовы определения – например, точки или прямой – довольно расплывчаты и бесполезны: прямая – это «та, что лежит равномерно на всех точках, что на ней помещены». Это определение, вероятно, возникло из строительной практики – там прямоту линий проверяли, глядя из некой точки вдоль проверяемой прямой. Чтобы вникнуть в это определение, нужно загодя иметь в уме понятие прямой. Точка есть «то, у чего нет частей» – еще одно определение, граничащие с бессмыслицей.
Евклидовы общие утверждения более элегантны. Эти внегеометрические логические утверждения[56], судя по всему, Евклид считал проявлениями бытового здравого смысла – в отличие от постулатов, что были вполне геометричны. Эту разницу обозначил ранее еще Аристотель. Всесторонне взвесив эти интуитивные допущения, Евклид, по сути, добавил их к постулатам, однако явно желал отличать их от чисто геометрических утверждений. Одно то, что Евклид счел необходимым вообще эти утверждения предъявить, указывает на глубину мысли:
1. Равные одному и тому же равны и между собой.
2. И если к равным прибавляются равные, то и целые будут равны.
3. И если от равных отнимаются равные, то остатки будут равны.
4. И совмещающиеся друг с другом равны между собой.
5. И целое больше части[57].
Если же отложить в сторону эти предварительные замечания, геометрическая суть евклидовой геометрии покоится на пяти постулатах. Первые четыре просты и могут быть сформулированы не без изящества. В современных терминах они звучат так: