Поскольку популяции могут как приобретать, так и терять аллели, а благоприятные в одной среде аллели могут быть губительными в другой, определение происхождения различных популяций посредством изучения распространенности в них тех или иных аллелей может оказаться ненадежным. Предположим, что популяция A имеет большое количество аллелей, к примеру, в среднем 20 аллелей на ген, в то время как популяция B имеет немного аллелей на ген, предположим, в среднем лишь 5, и эти 5 также находятся в популяции A. Значит ли это, что популяция A старше? Не обязательно, так как популяция A могла приобрести эти аллели вследствие интербридинга с другими популяциями, а не вследствие мутаций в течение длительного периода времени. Также популяция B может быть старше, но она могла испытать катастрофический урон своей численности, унесший большинство накопленных ею аллелей.

Аналогично, если популяция A имеет древние аллели, отсутствующие в популяции B, нельзя делать вывод, что популяция B представлена потомками популяции A, потерявшими древние аллели. Популяция A может иметь древние аллели лишь потому, что оставалась в той же достаточно стабильной среде обитания и не эволюционировала в такой степени, как популяция B, переместившаяся в совершенно другую среду. Также древние аллели могли проникнуть в популяцию A вследствие интербридинга с представителями популяции B, имеющей древние аллели.

Вся ДНК любого растения или животного имеет одинаковую базовую структуру (см. Приложение – ДНК). У всех животных, имеющих в клетках ядро (эукариотов, т. е. всех живых организмов, за исключением бактерий, сине-зеленых водорослей и вирусов), имеется два вида ДНК: ДНК ядра (ядерная ДНК) и ДНК митохондрий (митохондриальная ДНК, или мтДНК). Митохондрии, остатки захваченных клетками миллиарды лет назад бактерий, производят энергию для клетки. Захваченные бактерии помогали клеткам выживать, и именно поэтому их ДНК до сих пор там. Позже часть мтДНК переместилась в ядро и стала ядерной ДНК.

Между ядерной и мтДНК существует несколько существенных различий. Ядерная ДНК существует в виде двойной спирали, витая лестница которой с одной стороны представлена основанием А, связанным водородными связями с основанием Т другой стороны, либо основанием Ц, связанным с основанием Г. Одна нить является «смысловой» (или «матричной») и считывается при синтезе полипептида, а другая «анти-смысловой» (или «некодирующей») комплементарной ее копией. Ядерная ДНК представляет собой двухнитевую спираль с двумя свободными концами, мтДНК существует в виде однонитевого (обычно) кольца, разрывающегося только при его считывании. В каждой клетке находится только по две копии каждой нити ядерной ДНК, одна материнская и другая отцовская, и обычно тысячи копий мтДНК почти всегда только материнской. В ядерной ДНК человека содержится более 3 миллионов пар оснований и 20 488 генов, а в мтДНК только 16 569 оснований и 37 генов. Ядерная ДНК размещена в 23 парах хромосом, мтДНК не образует хромосом. В ядерной ДНК имеется несколько ферментных систем, способных исправлять химические повреждения и разрывы молекул ДНК, возникающие при нормальном биосинтезе ДНК или в результате воздействия физических или химических агентов; мтДНК таких систем не имеет, поэтому ошибки накапливаются в ней в 20 раз быстрее, чем в ядерной ДНК (Sykes, 2001, с. 55). Ядерная ДНК мутирует со скоростью один процент на миллиард клеточных делений; мтДНК мутирует примерно в 10 раз быстрее ядерной ДНК (Patterson, 1999, с. 152). Выделяют два типа ядерной ДНК: «экзоны» – ДНК, кодирующая полипептиды («гены») и «интроны» («мусорная» или «избыточная» ДНК») – ДНК, не кодирующая полипептиды