Ультрафиолетовая съемка

С помощью ультрафиолета изучают газовую составляющую Солнечной системы, да и всей Вселенной вообще. Ультрафиолетовый спектрометр стоит на телескопе Hubble (самый большой космический телескоп, названный в честь астронома Эдвина Хаббла), с его помощью удавалось получить представление о распределении воды в атмосфере Юпитера и обнаружить выбросы из подледного океана его спутника – Европы.



В ультрафиолете изучались почти все атмосферы планет, даже те, которых практически нет. Мощный ультрафиолетовый спектрометр зонда MAVEN позволил увидеть окружающие Марс водород и кислород на значительном удалении от поверхности. С его помощью даже сейчас можно наблюдать, как продолжается улетучивание газов из атмосферы Марса, и чем легче газ, тем интенсивнее этот процесс.


Водород и кислород в атмосфере Марса получаются путем фотохимической диссоциации (разделения) молекул воды на составляющие под действием солнечного излучения, а вода на Марсе испаряется из грунта. В результате MAVEN позволил ответить на вопрос «почему сейчас Марс сухой, хотя когда-то там были океан, озера и реки?»


Зонд Mariner-10, пролетая мимо Венеры на пути к Меркурию, в ультрафиолете смог выявить подробности венерианских облаков, увидеть V-образную структуру турбулентных потоков и определить скорость ветров.


Существует и более сложный способ исследования атмосферы – на просвет. Для этого исследуемый объект размещается между источником света и спектрометром космического аппарата. Так можно определить состав атмосферы, оценив разницу спектра источника света до и после перекрытия атмосферой. Таким образом, удается определить не только содержание газов в атмосфере, но и примерный состав и размер частиц пыли, если она тоже поглощает или рассеивает часть света.



Стоит отметить, что по части спектроскопических межпланетных исследований Россия занимает не последнее место. При участии Института космических исследований РАН создавался европейский инфракрасный спектрометр OMEGA для станции Mars Express; на том же аппарате стоит результат совместной работы российских, бельгийских и французских ученых – инфракрасный и ультрафиолетовый спектрометр SPICAM; совместно с итальянцами специалисты ИКИ РАН разработали прибор PFS. Схожий набор приборов был установлен на аппарате Venus Express, который закончил свою миссию в конце 2014 года. Сегодня у Марса работает тяжелый зонд ExoMars Trace Gas Orbiter Европейского космического агентства, на котором находятся несколько российских спектрометров для изучения атмосферы и поверхности «Красной планеты».


Свет обеспечивает нас значительным объемом информации о Солнечной системе – нужно только уметь смотреть и видеть, но есть и другие средства, связанные уже с ядерной и радиофизикой.


1.4. Как изучают планеты с помощью радио и радиации

Космическая радиация – это потоки фотонов и других элементарных частиц с очень высокой энергией, которыми наполнено все межзвездное и межпланетное пространство. Это результат излучения звезд, выбросов газопылевых дисков вокруг черных дыр, нейтронных звезд и пульсаров, взрывов сверхновых. Космической радиацией называют гамма-лучи и элементарные частицы: протоны (ядра атомов водорода), нейтроны, альфа- и бета-лучи, рентген, тяжелые заряженные частицы. Практически любой катаклизм во Вселенной является источником космической радиации. Она является проблемой для космонавтов и электроники, но для ученых радиация – подарок, позволяющий узнать много подробностей о космосе.



Гамма-спектроскопия