Спор двух первооткрывателей естественного отбора продолжался до конца жизни Дарвина и остался незавершенным. В дальнейшем половой отбор оказался надолго отодвинут куда-то на периферию эволюционной биологии. В первой половине ХХ века в научной печати изредка появлялись публикации на эту тему: одни ученые вслед за Уоллесом вовсе отрицали существование полового отбора, другие его защищали. И совсем уж редко дело доходило до экспериментов. Так в 1926 году была опубликована работа, из которой следовало, что сексуальная привлекательность самцов волнистых попугайчиков очень сильно зависит от пышности их “воротника” и особенно – от числа темных пятен на нем. Состригая или подклеивая темные перья, автор исследования по своему желанию превращал замухрышек во вполне видных кавалеров, а секс-идола – в жалкое пугало.

Пожалуй, самым заметным достижением этого периода стала теоретическая работа выдающегося английского математика и генетика, одного из основоположников СТЭ Рональда Фишера, предложившего в 1930 году возможный механизм действия полового отбора. Фишер рассуждал так. Допустим, в популяции имеется некоторое разнообразие самцов по определенному признаку – например, по той же длине хвоста. У одних самцов хвосты покороче, у других – подлиннее, но у всех – в пределах характерной для данного вида нормы. Ни короткие, ни длинные хвосты не дают своим обладателям сколько-нибудь заметных преимуществ ни объективно, ни в глазах противоположного пола – выбирая будущего супруга, самки не интересуются длиной его хвоста.

Допустим теперь, что в популяции произошла мутация, действие которой выражается в том, что самкам, в геноме которых она оказалась, длиннохвостые самцы нравятся больше, чем короткохвостые. Мутация сама по себе никак не влияет на приспособленность несущих ее самок (а у самцов она и вовсе никак не проявляется), то есть она нейтральна и в силу чисто случайных колебаний частоты (подробнее мы расскажем об этом процессе в главе 7) может получить некоторое распространение в популяции – особенно если та невелика. Не обязательно даже, чтобы эта мутация попала в геномы всех самок – достаточно, чтобы ею обладала заметная часть их. Тогда все эти самки выберут себе в партнеры самцов с хвостом подлиннее. Если вид полигамен, то длиннохвостые самцы могут скреститься со всеми теми самками, которые выбрали бы их по каким-то другим критериям, плюс со всеми любительницами длинных хвостов. То есть общая доля самок, выбравших именно длиннохвостых самцов, окажется выше случайной, и следовательно, признак, до того бывший нейтральным, получит неожиданное селективное преимущество.

Но на этом дело не кончится. Мы предполагаем, что длина хвоста – признак хотя бы отчасти наследственный, и сыновья длиннохвостых самцов в среднем будут иметь более длинные хвосты, чем их сверстники, родившиеся от других отцов. С другой стороны, влечение к длинным хвостам – признак исходно нейтральный, частота его за одно поколение, скорее всего, изменится мало, и в следующем поколении самок любительницы длинных хвостов опять будут составлять заметную долю. Таким образом, сыновья самок, выбравших себе длиннохвостых супругов, окажутся более популярными у самок следующего поколения – а это означает, что и предпочтение длинных хвостов окажется селективно выгодным признаком. Тем самым запускается положительная обратная связь: чем выгоднее для самца иметь длинный хвост – тем выгоднее для самки предпочитать именно таких самцов, и наоборот. Признаки, не дающие своим обладателям никаких объективных преимуществ, с каждым поколением делают друг друга все более выгодными, а отбор на них ведет к тому, что хвосты самцов становятся все длиннее и длиннее (ведь в каждом поколении успех сопутствует самым длиннохвостым) – до тех пор, пока неудобства и опасности, связанные со слишком длинным хвостом, не уравновесят приносимые им преимущества в размножении.