= 100, отклонение будет составлять около 10, а относительная ошибка – 10 %. Однако если n = 1 000 000, вы обнаружите отклонение около 1000, и относительная ошибка составит 0,1 %. Грубо говоря, данный статистический закон является весьма общим. Законы физики и физической химии неточны, и вероятная относительная ошибка для них составляет порядка

, где n есть число молекул, которые взаимодействуют, чтобы данный закон работал – и был справедливым в пространственных или временных (либо пространственно-временных) рамках, значимых для каких-либо рассуждений или эксперимента.

Из этого снова следует, что для того чтобы получать выгоду от достаточно точных законов, как во внутренних процессах, так и во взаимодействии с внешним миром, организм должен обладать крупной структурой. Иначе число взаимодействующих частиц будет слишком маленьким, а «законы» – неточными. Особенно строгим требованием является корень квадратный. Хотя миллион – весьма большое число, точность 1000 к 1 не кажется слишком высокой, если правило претендует на звание «закона природы».

Глава 2

Механизм наследственности

Оно [бытие] извечно; и законы Хранят, тверды и благосклонны Залоги дивных перемен.

И. В. Гёте. Завет
Ожидания классического физика не тривиальны, но неверны

Итак, мы пришли к выводу, что организм и испытываемые им биологически значимые процессы должны обладать в высшей степени «многоатомной» структурой и быть защищены от случайных «одноатомных событий». Это существенно для того, говорит нам «наивный физик», чтобы организм мог подчиняться достаточно точным физическим законам, на которых основана его удивительно регулярная и упорядоченная работа. Как эти выводы, достигнутые, биологически выражаясь, a priori, то есть с чисто физической точки зрения, согласуются с реальными биологическими фактами?

На первый взгляд кажется, будто данные выводы тривиальны. Лет тридцать назад какой-нибудь биолог вполне мог сказать, что хотя для популярного лектора уместно подчеркнуть значимость статистической физики, в частности для организма, сама идея банальна. Ведь не только тело взрослого представителя любого высшего вида, но и каждая составляющая его клетка содержит «космическое» число разнообразных атомов. И каждый наблюдаемый нами физиологический процесс внутри клетки или в ходе ее взаимодействия с окружающей средой, судя по всему – по крайней мере, так казалось тридцать лет назад, – затрагивает столь огромное число отдельных атомов и атомарных процессов, что соответствующим законам физики и физической химии ничто не грозит, несмотря на очень строгие требования, накладываемые статистической физикой на «большие числа». Эти требования я только что проиллюстрировал на примере правила √n.

Теперь мы знаем, что это мнение ошибочно. Как мы вскоре увидим, небольшие группы атомов – слишком небольшие, чтобы подчиняться точным статистическим законам, – играют важнейшую роль в упорядоченных и закономерных процессах в живом организме. Они управляют наблюдаемыми крупномасштабными особенностями, которые организм приобретает в ходе развития, определяют важные характеристики его работы – и во всем этом проявляются четкие и строгие биологические законы.

Следует начать с краткого описания ситуации, сложившейся в биологии, особенно в генетике. Иными словами, нужно суммировать нынешнее положение дел в предмете, которым я не владею. Тут ничего не поделаешь, и я прошу прощения, в первую очередь – у биологов, за дилетантский характер моей сводки. Кроме того, прошу дозволения изложить основные идеи в определенном смысле категорично. Нельзя ждать от бедного физика-теоретика компетентного обзора экспериментальных доказательств, которые включают, с одной стороны, множество длинных и красиво переплетающихся серий искусных экспериментов по скрещиванию, а с другой – прямые наблюдения за живой клеткой, выполненные с использованием изощренной современной микроскопии.