Сегодня нас повсюду окружают радиоволны. Постоянно. Чтобы в этом убедиться, достаточно поставить простой эксперимент. Включите радио и настройтесь на станцию. На любую, в любое время. Радиосигнал ловится везде, станции вещают круглосуточно. Как убедиться, что вокруг нас – постоянные потоки микроволн? Ваш мобильник может позвонить в любой момент, например прямо сейчас. Если вы не станете засовывать голову в мощное поле работающей микроволновой печи, то микроволны совершенно безопасны по сравнению с тем, что творится в высокоэнергетической части спектра.
Все эти фотоны перемещаются в вакууме со скоростью света. Это не просто хорошая идея, а закон. Видимый (для нас) свет находится в средней части электромагнитного спектра, но все фотоны летят со скоростью 300 тысяч километров в секунду (если быть точным – 299 792 458 метров в секунду). Это одна из наиболее важных фундаментальных констант, которые нам известны.
Скорость фотонов во всех диапазонах спектра одинакова, но длина волны у них разная. Если я встану и буду смотреть, как мимо меня пролетают электромагнитные волны, то частоту волны можно определить как количество гребней этой волны в секунду. Чем короче волна – тем больше гребней в секунду. Поэтому короткие волны обладают высокой частотой и, наоборот, длинные волны обладают низкой частотой. Отличная ситуация, чтобы вывести тождество: скорость света (c) равна частоте, умноженной на длину волны (λ). Частота обозначается греческой буквой ню: ν. Получается уравнение:
c = νλ.
Допустим, мы имеем дело с радиоволнами, длина которых – 1 метр. Скорость света приблизительно равна 300 000 000 метров в секунду, что равно ν раз на метр. Таким образом, частота составляет 300 000 000 гребней (или циклов) в секунду (или 300 мегациклов).
На самом деле, есть еще одно уравнение, связывающее частоту и энергию фотона. Энергия E фотона равна h:
E = hν.
Это уравнение открыл Эйнштейн. В уравнении используется постоянная Планка h, названная в честь немецкого физика Макса Планка. В этом уравнении она служит константой пропорциональности, описывая, как взаимосвязаны частота и энергия фотона. Чем выше частота – тем больше будет энергия отдельно взятого фотона. В рентгеновских фотонах содержится огромное количество энергии, а в фотонах радиоволн – малая толика.
Теперь спросим Солнце: сколько фотонов каждой конкретной частоты ты нам даешь? Сколько зеленых фотонов прилетает с твоей поверхности, сколько красных, инфракрасных, микроволновых, радиоволновых и гамма-лучевых? Хочу знать. От Солнца мы получаем столько фотонов, что можно построить гораздо более точную картину, нежели простую гистограмму, – ведь данные поступают сплошным потоком. Я могу сделать гладкую кривую, и на этом графике я отложу интенсивность как функцию длины волны. В данном случае интенсивность, обозначаемая по оси ординат, соответствует количеству фотонов, за секунду поступающих с каждого квадратного метра поверхности Солнца, на единичный интервал длин волн, умноженному на энергию, которой обладает каждый фотон. Мы могли бы просто подсчитать фотоны, но, в конечном счете, нас интересует именно энергия, которую они несут. По оси ординат можно оценить мощность (количество энергии в единицу времени), поступающую с солнечной поверхности на единицу площади на единичный интервал длин волн. По оси абсцисс откладывается длина волны, возрастающая слева направо. Итак, давайте изобразим на графике рентгеновские лучи, ультрафиолетовые лучи, видимый спектр (цвета радуги), инфракрасные волны (ИК) и микроволны (обозначим их μ-волны). На рис. 4.4 показана функция распределения интенсивности солнечного излучения.