или В, предпочтет наш гипотетический белок? Ответить на это можно, приняв во внимание, что две концевые аминокислоты несут отрицательный заряд. Поскольку одноименные заряды отталкиваются, конфигурация будет тем более устойчивой, чем дальше друг от друга они окажутся. Поэтому предпочтение будет отдано А.


Молекулярные цепи некоторых белков бывают такими длинными, что для сворачивания (фолдинга, или укладки) им необходима «помощь» особых вспомогательных белков, называемых хаперонами. Неправильно свернутые белки, подобно людям с дефектами позвоночника, не могут функционировать должным образом. Такие белки клетка маркирует как подлежащие уничтожению – соответствующая аминокислотная цепь разлагается на составляющие, и заново собирается другая в процессе синтеза новых белков.

Как белки создают жизнь

Живые организмы отличаются от неживых тем, что движутся. Именно энергия их движения используется для выполнения «работы», характерной для живых систем, – дыхания, пищеварения, мышечного сокращения. Чтобы понять природу жизни, нам необходимо прежде всего разобраться, что приводит в движение белковые «машины».



На первом рисунке (стр. 72) А представляет собой предпочтительную конформацию нашей гипотетической белковой цепи. Силы отталкивания между двумя отрицательно заряженными концевыми аминокислотами (обозначены стрелками) заставляют цепь растягиваться так, чтобы эти аминокислоты оказались как можно дальше друг от друга. B – это концевая аминокислота крупным планом. Сигнал – в данном случае молекула, имеющая большой положительный заряд (белый шарик), притягивается к отрицательно заряженному участку концевой аминокислоты и связывается с ним. В этом конкретном случае положительный заряд сигнала больше отрицательного заряда аминокислоты. После того как он связывается с белком, на соответствующем конце цепи образуется избыток положительного заряда. Поскольку положительный и отрицательный заряды притягиваются, аминокислоты белковой цепи станут поворачиваться относительно соединяющих их связей так, чтобы положительно и отрицательно заряженные концы сблизились. C демонстрирует переход от конформации А к конформации B. Изменение конформации порождает движение, которое используется для выполнения полезной работы – в частности, для осуществления таких функций, как пищеварение, дыхание и сокращение мышц. Когда сигнал отделяется, белок возвращается к своей предпочтительной вытянутой конформации. Так сигнально-обусловленное движение белковых молекул делает возможными процессы жизнедеятельности.


Окончательная форма, которую принимает молекула белка (ее конформация, как говорят биологи), отражает равновесное расположение ее электрических зарядов. Но если распределение положительных и отрицательных зарядов молекулы изменится, то основа белка тут же начнет изгибаться и приспосабливаться к новой ситуации. Распределение зарядов в белковой молекуле может быть избирательно изменено целым рядом процессов, в частности присоединением других химических веществ (например, гормонов), воздействием ферментов или присоединением ионов и даже воздействием внешних электромагнитных полей – например, тех, что излучаются мобильными телефонами.

Трансформирующиеся белки представляют собой пример еще более впечатляющего конструктивного совершенства, так как их точнейшим образом выверенная трехмерная конфигурация дает им возможность связываться с другими белками. Когда молекула белка встречается с другой физически и энергетически комплементарной белковой молекулой, они соединяются друг с другом примерно так же, как детали обычных механизмов – например, шестеренки в часах.