y = np.linspace(-5, 5, 50)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sqrt(X**2 + Y**2))

fig = go.Figure(data=[go.Surface(z=Z, x=X, y=Y)])

fig.update_layout(

title='3D График поверхности',

scene=dict(

xaxis_title='X',

yaxis_title='Y',

zaxis_title='Z'

)

)

fig.show()

```




Особенности:

– Используем `go.Surface` для построения трёхмерной поверхности.

– Параметры `scene` задают подписи к осям в трёхмерном пространстве.


Интерактивность с помощью виджетов

Plotly позволяет добавлять интерактивные элементы, такие как слайдеры. Например, график, где пользователь может выбирать диапазон времени.

```python

from plotly.subplots import make_subplots

years = ['2020', '2021', '2022', '2023']

values = [500, 700, 800, 600]

fig = make_subplots(rows=1, cols=1)

fig.add_trace(go.Scatter(

x=years,

y=values,

mode='lines+markers',

name='Yearly Data'

))

fig.update_layout(

title='Интерактивный график с выбором диапазона',

xaxis=dict(rangeslider=dict(visible=True)), # Добавляем ползунок

template='plotly_white'

)

fig.show()

```



Интерактивность:

– Ползунок позволяет выбирать диапазон данных на оси X.

– Это полезно для работы с временными рядами.

Plotly – универсальный инструмент для создания интерактивных графиков. Благодаря множеству типов графиков и богатым возможностям настройки, библиотека подходит для самых разнообразных задач: от анализа данных до их визуальной презентации. Используя Plotly, вы можете не только создавать красивые графики, но и предоставлять пользователям возможность активно взаимодействовать с ними.


Задачи для практики

Задача 1: Построение графика изменения температуры

Описание:

Имеется набор данных о температуре за неделю:

– Дни: `['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']`

– Температура: `[15, 17, 20, 22, 19, 18, 16]`

Постройте линейный график, отображающий изменение температуры. Подпишите оси и добавьте интерактивность.

Решение:

```python

import plotly.graph_objects as go

# Данные

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

temperatures = [15, 17, 20, 22, 19, 18, 16]

# Построение графика

fig = go.Figure()

fig.add_trace(go.Scatter(

x=days,

y=temperatures,

mode='lines+markers',

name='Temperature',

line=dict(color='blue', width=2),

marker=dict(size=8)

))

# Настройка графика

fig.update_layout(

title='Изменение температуры за неделю',

xaxis_title='Дни недели',

yaxis_title='Температура (°C)',

template='plotly_white'

)

# Показ графика

fig.show()

```




Задача 2: Построение круговой диаграммы

Описание:

Имеется информация о продажах по категориям:

– Категории: `['Electronics', 'Clothing', 'Groceries', 'Books', 'Furniture']`

– Продажи: `[1200, 1500, 800, 600, 900]`

Постройте круговую диаграмму, отображающую доли продаж по категориям.

Решение:

```python

import plotly.graph_objects as go

# Данные

categories = ['Electronics', 'Clothing', 'Groceries', 'Books', 'Furniture']

sales = [1200, 1500, 800, 600, 900]

# Построение круговой диаграммы

fig = go.Figure(data=[go.Pie(

labels=categories,

values=sales,

hole=0.4 # Делает диаграмму "пончиковой"

)])

# Настройка графика

fig.update_layout(

title='Распределение продаж по категориям',

template='plotly_white'

)

# Показ графика

fig.show()

```



Задача 3: Построение столбчатого графика с несколькими категориями

Описание:

Имеется информация о продажах в двух магазинах по категориям товаров:

– Категории: `['Electronics', 'Clothing', 'Groceries', 'Books', 'Furniture']`

– Продажи в магазине A: `[1000, 1400, 800, 500, 700]`

– Продажи в магазине B: `[1200, 1500, 600, 700, 900]`

Постройте группированный столбчатый график для сравнения продаж в двух магазинах.