В настоящее время на базе этих подходов пытаются решать классические проблемы ИИ, связанные с умением рассуждать и понимать, программировать и планировать. «Строительные блоки», обнаруженные при изучении восприятия, сейчас пробуют распространять на когнитивные задачи более высокого уровня (психологи называют это действиями Системы 2). Я полагаю, именно таким способом мы будем двигаться к сильному ИИ. Это нельзя назвать гибридной системой; скорее, мы пытаемся работать над классическим ИИ, используя как строительный материал концепции из глубокого обучения. Можно сказать, что требуются альтернативные пути достижения цели.

М. Ф.: То есть вы считаете, что все сведется к нейронным сетям с различными архитектурами?

И. Б.: Да. Ведь человеческий мозг состоит из нейронных сетей. Нужно придумать архитектуры и обучающие техники, позволяющие решать задачи, поставленные перед классическим ИИ.

М. Ф.: Обучения и тренировки будет достаточно или потребуется какая-то дополнительная структура?

И. Б.: Она уже существует, просто отличается от привычной структуры представления знаний, которую мы наблюдаем в энциклопедиях или формулах. Она имеет архитектуру нейронной сети и довольно широкие допущения по поводу окружающего мира и вершины собственных возможностей. Чтобы реализовывать в нейронной сети механизм внимания, такая структура требует большого количества предварительных знаний. Оказывается, данные имеют решающее значение для таких вещей, как машинный перевод.

Уже существует множество предположений в разных предметных областях о мире и о внедряемой функции, которые в виде архитектур и целей содержались в технологии глубокого обучения. Именно этому посвящено большинство современных научных работ.

М. Ф.: Говорят, что новорожденные развивают навык распознавания лиц с первых дней жизни. Очевидно, что это возможно благодаря некой структуре в мозге. Это не просто реакция нейронов на пикселы.

И. Б.: Ошибаетесь! Это именно реакция нейронов на пикселы, кроме того, в мозге ребенка присутствует особая структура, которая распознает нечто круглое с двумя точками внутри.

М. Ф.: Я считаю, что она существует с момента рождения.

И. Б.: Разумеется. И все то, что мы проектируем в нейронных сетях, тоже существует с самого начала. Работа исследователя в области глубокого обучения напоминает процесс эволюции. Знания вводятся как в виде структуры, так и через обучение.

При желании можно создать нечто, позволяющее сети распознавать лица, но в этом нет смысла, так как ИИ быстро обучается. Поэтому мы работаем над решением более сложных проблем.

Никто не говорит об отсутствии врожденных знаний у людей, детей и животных. Более того, у большинства животных знания исключительно врожденные. Муравью не приходится долго учиться, он действует в соответствии с заложенной в него программой. Но чем выше существо в иерархии интеллекта, тем большую роль в его жизнедеятельности начинает играть обучение. Человека отличает именно соотношение врожденных и приобретенных навыков.

М. Ф.: Я бы хотел уточнить некоторые из этих концепций. В 1980-е гг., после периода забвения, снова появился интерес к нейронным сетям, но речи о множестве слоев и глубине еще не шло. Вы участвовали в развитии глубокого обучения. Не могли бы вы простыми словами объяснить, что это такое?

И. Б.: Глубокое обучение – это совокупность методов машинного обучения. Но если в случае классического машинного обучения компьютеры учатся по прецедентам, глубокое обучение больше напоминает процесс, происходящий в мозге человека.