Наконец, последней «претензией» к растровой графике были большие объемы памяти, которых она требует. И действительно, с этим недостатком ничего не поделаешь. Мы сами вывели принцип, согласно которому большее количество пикселов означает более высокое качество изображения. Информация о каждом пикселе (его цвет) хранится в памяти компьютера отдельно, и чем больше пикселов, тем больше памяти для этого нужно. Высококачественные изображения больших форматов (например, для настенных календарей) иногда могут занимать сотни мегабайт. Добавьте к этому «память» программы, благодаря которой мы можем отменять совершенные действия, – и вы поймете, почему профессиональные дизайнеры никогда не бывают удовлетворены количеством оперативной памяти в компьютере и размерами жестких дисков.
А вот векторная графика обычно куда компактнее. Размер ее файлов определяется не размером изображения, а его сложностью – чем больше объектов использовано в изображении, тем больше информации требуется сохранить. Однако редкий векторный рисунок, пусть даже сложный, занимает даже десять мегабайт – обычно они довольствуются куда более скромными значениями.
Глава 2
Теория цвета
• Цветовая модель RGB
• Цветовая модель CMYK
• Цветовая модель L*a*b
• Цветовая модель HSB
• Цветовой режим Grayscale (Оттенки серого)
• Индексированный цветовой режим
• Цветовой режим Monochrome (Монохромный)
Как мы уже говорили, растровый рисунок состоит из отдельных пикселов, а каждый пиксел хранит только одно значение: свой цвет. Поэтому не будет преувеличением, если мы скажем, что принципы и способы хранения цветов составляют самую суть растровой графики.
Применительно к компьютерной графике слово «цвет» означает не совсем то, что мы привыкли подразумевать в обычной речи. В компьютерной графике черный – это цвет, и белый – это цвет, и серый – такой же цвет, как и зеленый с красным.
Для записи цвета пиксела используются, разумеется, цифровые значения – в компьютере все в итоге сводится к цифрам. Соответственно, существуют и разные системы исчисления цвета, которые различаются принципами и формой записи информации. Видимый цвет разлагается на отдельные «составляющие», информация о которых и записывается. Если необходимо отобразить цвет, производится обратная операция: из отдельных компонентов «синтезируется» нужный оттенок цвета.
В зависимости от принципа, по которому информация о цвете превращается в набор цифр, принято различать цветовые модели, то есть некие алгоритмы, согласно которым можно записать оттенок цвета в виде чисел, или наоборот – превратить цепочку цифр в цвет. Разные цветовые модели, как мы увидим чуть позже, обладают разными возможностями и в разной степени приспособлены для решения тех или иных задач.
Основными цветовыми моделями являются:
• RGB, «основная» в компьютерной графике, поскольку согласно этой модели работают цветные мониторы, сканеры – да и большинство компьютерных программ тоже «опираются» на эту систему;
• CMYK, «основная» в цветной печати: струйные и лазерные принтеры и даже настоящие типографии работают с этой системой исчисления цвета (или с ее более совершенными производными);
• HSB (и ее варианты) применяется для каталогизации и описания цветов;
• L*a*b, наиболее сложная и наиболее «научная» из цветовых моделей, используется преимущественно в технических целях.
Эти четыре цветовые модели называются полноцветными, поскольку могут описать очень большое количество цветов – десятки миллионов оттенков. Человеческий глаз обычно не в состоянии различить «соседние» цвета в полноцветных цветовых моделях: если цвета будут отличаться на одну или две цифры, то нам они будут казаться одинаковыми.