Парашюты и сети против зенитных ракет
Но вернемся к «Фау-1». Запускался он специальной катапультой, разгонявшей снаряд до 240 км/ч. Затем начинал работать двигатель, скорость возрастала до 580 км/ч, и самолет-снаряд двигался к цели с характерным похрюкиванием, за что и получил прозвище «хрюшка». Наведение на цель было примитивным. На борту имелся часовой механизм, с помощью которого через определенный промежуток времени отключалась подача топлива, и «Фау-1» падал вниз подобно авиабомбе. Понятно, что при такой точности можно было поражать лишь крупномасштабные цели. И немцы применяли «Фау-1», в основном, для бомбардировки Лондона.
Здесь-то и пригодились англичанам сети воздушного заграждения, в которые попадали те «Фау-1», которые не удавалось перехватить летчикам-истребителям.
Но шло время, и самым надежным щитом от налетов авиации стали радары, обнаруживающие самолеты на весьма значительном расстоянии от цели, так что они могли быть с большой вероятностью сбиты ракетами класса «земля-воздух» или истребителями-перехватчиками.
Правда, и такой щит недолго оставался надежным. Вскоре был найден путь преодоления и этой заградительной системы. Еще до входа в зону действия средств противовоздушной обороны, за несколько сот километров от нее самолет-носитель сбрасывал крылатую ракету, которая на собственной тяге летела с большой скоростью к цели на очень небольшой высоте, тщательно копируя рельеф местности.
Перехватить такую ракету стало очень трудно, поскольку радары не могли обнаружить ее заблаговременно. На большом расстоянии сигнал терялся в массе радиоотражений от холмов, высотных зданий и даже деревьев.
Положение удалось несколько исправить с помощью новейшей системы многоцелевого наблюдения JLENS[1], включающей сеть аэростатов с РЛС и предназначенной для дальнего обнаружения и защиты от ударов крылатых ракет. Эта система, разработка которой ведется в США с середины 90-х годов ХХ века, должна значительно увеличивать дальность обнаружения низколетящих целей и возможности их поражения активными средствами ПВО и ПРО.
Для этого, как показали расчеты, аэростаты должны находиться на высотах от 3000 м до 4500 м. Запускают их как с наземных площадок, так и с надводных кораблей, удерживая на месте с помощью прочных тросов. По этим же кабель-тросам на борт гондолы аэростата подается электроэнергия для питания электронной аппаратуры, а обратно на Землю передаются данные разведки.
В середине 1999 года на очередных учениях «Роуинг сэндз», проводившихся армией США на полигоне Уайт-Сэндз (шт. Нью-Мексико) были проверены возможности работы аэростатного комплекса JLENS в сложных метеоусловиях. Оперативное руководство осуществлялось штабом 32-го командования ПВО и ПРО армии США.
В ходе маневров было показано, что с рабочей высоты 4500 м над поверхностью земли разведывательная аппаратура аэростата JLENS позволяет обнаруживать и сопровождать маловысотные цели, обеспечивая общевойсковому командиру заблаговременное предоставление информации о воздушных и наземных целях, ранее недоступных для такого наблюдения. А принимавшая участие в учении батарея ЗРК «Пэтриот» сбила своим огнем крылатую ракету по данным, полученным от JLENS.
Тем не менее, как показывает опыт, сбить крылатую ракету, несущуюся на большой скорости и малой высоте, – большая удача. Но как все-таки ее перехватить?
Вот тогда-то наши конструкторы и вспомнили о заградительных сетях. Для охраны наиболее важных объектов – военных заводов, центров управления войсками, ракетных шахт, крупных городов – сегодня разработана аэростатическая система воздушного заграждения «Бастион». Ее основа – сети, только не металлические, как в прошлую войну, а синтетические. Ведь металл даже на большом расстоянии мог быть зафиксирован бортовыми радарами ракеты. Капрон, нейлон, кевлар, композитные волокна, сравнимые по прочности со стальной проволокой, позволяют создавать сети, не только не обнаруживаемые радарным лучом, но и малозаметные даже для глаза в ясный, солнечный день. Поднимают такую «паутину» опять-таки на аэростатах из синтетической ткани или пленки, заполняемых легким газом.